Authors

* External authors

Venue

Date

Share

Reducing Communication for Split Learning by Randomized Top-k Sparsification

Fei Zheng*

Chaochao Chen*

Lingjuan Lyu

Binhui Yao*

* External authors

IJCAI 2023

2023

Abstract

The EU AI Act proposal addresses, among other applications, AI systems that enable facial classification and emotion recognition. As part of previous work, we have investigated how citizens deliberate about the validity of AI-based facial classifications in the advertisement and the hiring contexts (N= 3745). In our current research, we extend this investigation by collecting laypeople’s ethical evaluations of facial analysis AI in Japan, Argentina, Kenya and the United States (N~ 4000). Our project serves as a motivation to ask how such cross-cultural AI ethics perspectives can inform EU policymaking regarding AI systems, which enable facial classification and emotion recognition. We refer to suggestions on achieving policy impact and aim to discuss this topic space with workshop participants.

Related Publications

Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Model

WWW, 2025
Jie Ren, Kangrui Chen, Chen Chen, Vikash Sehwag, Yue Xing, Jiliang Tang, Lingjuan Lyu

Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been …

Exploit Gradient Skewness to Circumvent Byzantine Defenses for Federated Learning

AAAI, 2025
Yuchen Liu*, Chen Chen, Lingjuan Lyu, Yaochu Jin, Gang Chen*

Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine r…

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

  • HOME
  • Publications
  • Reducing Communication for Split Learning by Randomized Top-k Sparsification

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.