Authors

Venue

Date

Share

Reductive, Exclusionary, Normalising: The Limits of Generative AI

Fabio Morreale

Marco A. Martínez-Ramírez

Raul Masu

WeiHsiang Liao

Yuki Mitsufuji

TISMIR-25

2025

Abstract

Up until recently, most approaches to music generation were based on deductive logic: generative rules were devised on the basis of musicians’ preferences, subjective appreciation and dominant music theories. Machine learning (ML) introduced a paradigm shift: vast datasets of existing music are used to train neural networks capable of generating new compositions supposedly without embedding predefined musical rules. We first outline how rule-based systems depend on a series of reductionist processes and assumptions about music that affect what can be generated. We then examine ML-based generative music systems and show that they are still unable to generate the full theoretical space of musical possibilities, they are still grounded on reductionist processes and their soundness is still affected by unquestioned assumptions. We also identify the limitations of semantic bridges used to form musical meaning and the epistemic framework of cascading modules. Finally, we propose that the artistic potential of ML systems might lie beyond attempts to replicate human music-making methods.

Related Publications

Vid-CamEdit: Video Camera Trajectory Editing with Generative Rendering from Estimated Geometry

AAAI, 2025
Junyoung Seo, Jisang Han, Jaewoo Jung, Siyoon Jin, Joungbin Lee, Takuya Narihira, Kazumi Fukuda, Takashi Shibuya, Donghoon Ahn, Shoukang Hu, Seungryong Kim*, Yuki Mitsufuji

We introduce Vid-CamEdit, a novel framework for video camera trajectory editing, enabling the re-synthesis of monocular videos along user-defined camera paths. This task is challenging due to its ill-posed nature and the limited multi-view video data for training. Traditiona…

SteerMusic: Enhanced Musical Consistency for Zero-shot Text-Guided and Personalized Music Editing

AAAI, 2025
Xinlei Niu, Kin Wai Cheuk, Jing Zhang, Naoki Murata, Chieh-Hsin Lai, Michele Mancusi, Woosung Choi, Giorgio Fabbro*, Wei-Hsiang Liao, Charles Patrick Martin, Yuki Mitsufuji

Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided methods rely on pretrained diffusion models by involving forward-backward diffusion processes for editing…

Music Arena: Live Evaluation for Text-to-Music

NeurIPS, 2025
Yonghyun Kim, Wayne Chi, Anastasios N. Angelopoulos, Wei-Lin Chiang, Koichi Saito, Shinji Watanabe, Yuki Mitsufuji, Chris Donahue

We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…

  • HOME
  • Publications
  • Reductive, Exclusionary, Normalising: The Limits of Generative AI

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.