Authors

* External authors

Venue

Date

Share

Rethinking Social Robot Navigation: Leveraging the Best of Two Worlds

Amir Hossain Raj*

Zichao Hu*

Haresh Karnan*

Rohan Chandra*

Amirreza Payandeh*

Luisa Mao*

Peter Stone

Joydeep Biswas*

Xuesu Xiao*

* External authors

ICRA-24

2024

Abstract

Empowering robots to navigate in a socially compliant manner is essential for the acceptance of robots moving in human-inhabited environments. Previously, roboticists have developed geometric navigation systems with decades of empirical validation to achieve safety and efficiency. However, the many complex factors of social compliance make geometric navigation systems hard to adapt to social situations, where no amount of tuning enables them to be both safe (people are too unpredictable) and efficient (the frozen robot problem). With recent advances in deep learning approaches, the common reaction has been to entirely discard these classical navigation systems and start from scratch, building a completely new learning-based social navigation planner. In this work, we find that this reaction is unnecessarily extreme: using a large-scale real-world social navigation dataset, SCAND, we find that geometric systems can produce trajectory plans that align with the human demonstrations in a large number of social situations. We, therefore, ask if we can rethink the social robot navigation problem by leveraging the advantages of both geometric and learning-based methods. We validate this hybrid paradigm through a proof-of-concept experiment, in which we develop a hybrid planner that switches between geometric and learning-based planning. Our experiments on both SCAND and two physical robots show that the hybrid planner can achieve better social compliance compared to using either the geometric or learning-based approach alone.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • Rethinking Social Robot Navigation: Leveraging the Best of Two Worlds

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.