Authors

* External authors

Date

Share

Reward (Mis)design for autonomous driving

W. Bradley Knox*

Alessandro Allievi*

Holger Banzhaf*

Felix Schmitt*

Peter Stone

* External authors

2023

Abstract

This article considers the problem of diagnosing certain common errors in reward design. Its insights are also applicable to the design of cost functions and performance metrics more generally. To diagnose common errors, we develop 8 simple sanity checks for identifying flaws in reward functions. We survey research that is published in toptier venues and focuses on reinforcement learning (RL) for autonomous driving (AD). Specifically, we closely examine the reported reward function in each publication and present these reward functions in a complete and standardized format in the appendix. Wherever we have sufficient information, we apply the 8 sanity checks to each surveyed reward function, revealing near-universal flaws in reward design for AD that might also exist pervasively across reward design for other tasks. Lastly, we explore promising directions that may aid the design of reward functions for AD in subsequent research, following a process of inquiry that can be adapted to other domains.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.