Authors

* External authors

Date

Share

Reward (Mis)design for autonomous driving

W. Bradley Knox*

Alessandro Allievi*

Holger Banzhaf*

Felix Schmitt*

Peter Stone

* External authors

2023

Abstract

This article considers the problem of diagnosing certain common errors in reward design. Its insights are also applicable to the design of cost functions and performance metrics more generally. To diagnose common errors, we develop 8 simple sanity checks for identifying flaws in reward functions. We survey research that is published in toptier venues and focuses on reinforcement learning (RL) for autonomous driving (AD). Specifically, we closely examine the reported reward function in each publication and present these reward functions in a complete and standardized format in the appendix. Wherever we have sufficient information, we apply the 8 sanity checks to each surveyed reward function, revealing near-universal flaws in reward design for AD that might also exist pervasively across reward design for other tasks. Lastly, we explore promising directions that may aid the design of reward functions for AD in subsequent research, following a process of inquiry that can be adapted to other domains.

Related Publications

N-agent Ad Hoc Teamwork

NeurIPS, 2024
Caroline Wang*, Arrasy Rahman*, Ishan Durugkar, Elad Liebman*, Peter Stone

Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algor…

Discovering Creative Behaviors through DUPLEX: Diverse Universal Features for Policy Exploration

NeurIPS, 2024
Borja G. Leon*, Francesco Riccio, Kaushik Subramanian, Pete Wurman, Peter Stone

The ability to approach the same problem from different angles is a cornerstone of human intelligence that leads to robust solutions and effective adaptation to problem variations. In contrast, current RL methodologies tend to lead to policies that settle on a single solutio…

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Pete Wurman, Peter Stone

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.