Authors
- Sungho Lee*
- Marco A. Martínez-Ramírez
- Wei-Hsiang Liao
- Stefan Uhlich*
- Giorgio Fabbro*
- Kyogu Lee*
- Yuki Mitsufuji
* External authors
Venue
- DAFx-24
Date
- 2024
SEARCHING FOR MUSIC MIXING GRAPHS: A PRUNING APPROACH
Sungho Lee*
Marco A. Martínez-Ramírez
Stefan Uhlich*
Giorgio Fabbro*
Kyogu Lee*
* External authors
DAFx-24
2024
Abstract
Music mixing is compositional -- experts combine multiple audio processors to achieve a cohesive mix from dry source tracks. We propose a method to reverse engineer this process from the input and output audio. First, we create a mixing console that applies all available processors to every chain. Then, after the initial console parameter optimization, we alternate between removing redundant processors and fine-tuning. We achieve this through differentiable implementation of both processors and pruning. Consequently, we find a sparse mixing graph that achieves nearly identical matching quality of the full mixing console. We apply this procedure to dry-mix pairs from various datasets and collect graphs that also can be used to train neural networks for music mixing applications.
Related Publications
To accelerate sampling, diffusion models (DMs) are often distilled into generators that directly map noise to data in a single step. In this approach, the resolution of the generator is fundamentally limited by that of the teacher DM. To overcome this limitation, we propose …
Generating novel views from a single image remains a challenging task due to the complexity of 3D scenes and the limited diversity in the existing multi-view datasets to train a model on. Recent research combining large-scale text-to-image (T2I) models with monocular depth e…
This paper presents the crossing scheme (X-scheme) for improving the performance of deep neural network (DNN)-based music source separation (MSS) with almost no increasing calculation cost. It consists of three components: (i) multi-domain loss (MDL), (ii) bridging operation…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.