Authors
- Sungho Lee*
- Marco A. Martínez-Ramírez
- Wei-Hsiang Liao
- Stefan Uhlich*
- Giorgio Fabbro*
- Kyogu Lee*
- Yuki Mitsufuji
* External authors
Venue
- DAFx-24
Date
- 2024
SEARCHING FOR MUSIC MIXING GRAPHS: A PRUNING APPROACH
Sungho Lee*
Marco A. Martínez-Ramírez
Stefan Uhlich*
Giorgio Fabbro*
Kyogu Lee*
* External authors
DAFx-24
2024
Abstract
Music mixing is compositional -- experts combine multiple audio processors to achieve a cohesive mix from dry source tracks. We propose a method to reverse engineer this process from the input and output audio. First, we create a mixing console that applies all available processors to every chain. Then, after the initial console parameter optimization, we alternate between removing redundant processors and fine-tuning. We achieve this through differentiable implementation of both processors and pruning. Consequently, we find a sparse mixing graph that achieves nearly identical matching quality of the full mixing console. We apply this procedure to dry-mix pairs from various datasets and collect graphs that also can be used to train neural networks for music mixing applications.
Related Publications
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…
This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…
Blind inverse problems, where both the target data and forward operator are unknown, are crucial to many computer vision applications. Existing methods often depend on restrictive assumptions such as additional training, operator linearity, or narrow image distributions, thu…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.