Authors

* External authors

Venue

Date

Share

STARSS23: An Audio-Visual Dataset of Spatial Recordings of Real Scenes with Spatiotemporal Annotations of Sound Events

Kazuki Shimada

Archontis Politis*

Parthasaarathy Sudarsanam*

Daniel Krause*

Kengo Uchida

Sharath Adavann*

Aapo Hakala*

Yuichiro Koyama*

Naoya Takahashi

Shusuke Takahashi*

Tuomas Virtanen*

Yuki Mitsufuji

* External authors

NeurIPS 2023

2023

Abstract

While direction of arrival (DOA) of sound events is generally estimated from multichannel audio data recorded in a microphone array, sound events usually derive from visually perceptible source objects, e.g., sounds of footsteps come from the feet of a walker. This paper proposes an audio-visual sound event localization and detection (SELD) task, which uses multichannel audio and video information to estimate the temporal activation and DOA of target sound events. Audio visual SELD systems can detect and localize sound events using signals from a microphone array and audio-visual correspondence. We also introduce an audio visual dataset, Sony-TAu Realistic Spatial Soundscapes 2023 (STARSS23), which consists of multichannel audio data recorded with a microphone array, video data, and spatiotemporal annotation of sound events. Sound scenes in STARSS23 are recorded with instructions, which guide recording participants to ensure adequate activity and occurrences of sound events. STARSS23 also serves human-annotated temporal activation labels and human-confirmed DOA labels, which are based on tracking results of a motion capture system. Our benchmark results show that the audio-visual SELD system achieves lower localization error than the audio-only system. The data is available at https://zenodo.org/record/7880637.

Related Publications

Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric

ICLR, 2025
Toshimitsu Uesaka, Taiji Suzuki, Yuhta Takida, Chieh-Hsin Lai, Naoki Murata, Yuki Mitsufuji

In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in…

Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning

ICLR, 2025
Shang-Fu Chen, Chieh-Hsin Lai, Dongjun Kim*, Naoki Murata, Takashi Shibuya, Wei-Hsiang Liao, Shao-Hua Sun, Yuki Mitsufuji, Ayano Hiranaka

Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward model…

Mining your own secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models

ICLR, 2025
Saurav Jha, Shiqi Yang*, Masato Ishii, Mengjie Zhao*, Christian Simon, Muhammad Jehanzeb Mirza, Dong Gong, Lina Yao, Shusuke Takahashi*, Yuki Mitsufuji

Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a ti…

  • HOME
  • Publications
  • STARSS23: An Audio-Visual Dataset of Spatial Recordings of Real Scenes with Spatiotemporal Annotations of Sound Events

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.