Authors
- Jie Ren
- Kangrui Chen
- Yingqian Cui
- Shenglai Zeng
- Hui Liu
- Yue Xing
- Jiliang Tang
- Lingjuan Lyu
Venue
- CVPR-25
Date
- 2025
Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models
Jie Ren
Kangrui Chen
Yingqian Cui
Shenglai Zeng
Hui Liu
Yue Xing
Jiliang Tang
CVPR-25
2025
Abstract
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts. To mitigate these risks, concept removal methods have been proposed. These methods aim to modify diffusion models to prevent the generation of malicious and unwanted concepts. Despite these efforts, existing research faces several challenges: (1) a lack of consistent comparisons on a comprehensive dataset, (2) ineffective prompts in harmful and nudity concepts, (3) overlooked evaluation of the ability to generate the benign part within prompts containing malicious concepts. To address these gaps, we propose to benchmark the concept removal methods by introducing a new dataset, Six-CD, along with a novel evaluation metric. In this benchmark, we conduct a thorough evaluation of concept removals, with the experimental observations and discussions offering valuable insights in the field.
Related Publications
With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…
As scaling laws in generative AI push performance, they simultaneously concentrate the development of these models among actors with large computational resources. With a focus on text-to-image (T2I) generative models, we aim to unlock this bottleneck by demonstrating very l…
While existing vision and multi-modal foundation models can handle multiple computer vision tasks, they often suffer from significant limitations, including huge demand for data and computational resources during training and inconsistent performance across vision tasks at d…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.