* External authors




Temporal-Logic-Based Reward Shaping for Continuing Reinforcement Learning Tasks

Yuqian Jiang*

Sudarshanan Bharadwaj*

Bo Wu*

Rishi Shah*

Ufuk Topcu*

Peter Stone

* External authors




In continuing tasks, average-reward reinforcement learning may be a more appropriate problem formulation than the more common discounted reward formulation. As usual, learning an optimal policy in this setting typically requires a large amount of training experiences. Reward shaping is a common approach for incorporating domain knowledge into reinforcement learning in order to speed up convergence to an optimal policy. However, to the best of our knowledge, the theoretical properties of reward shaping have thus far only been established in the discounted setting. This paper presents the first reward shaping framework for average-reward learning and proves that, under standard assumptions, the optimal policy under the original reward function can be recovered. In order to avoid the need for manual construction of the shaping function, we introduce a method for utilizing domain knowledge expressed as a temporal logic formula. The formula is automatically translated to a shaping function that provides additional reward throughout the learning process. We evaluate the proposed method on three continuing tasks. In all cases, shaping speeds up the average-reward learning rate without any reduction in the performance of the learned policy compared to relevant baselines.

Related Publications

Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

AAAI, 2024
Zizhao Wang*, Caroline Wang*, Xuesu Xiao*, Yuke Zhu*, Peter Stone

Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is …

Minimum Coverage Sets for Training Robust Ad Hoc Teamwork Agents

AAAI, 2024
Arrasy Rahman*, Jiaxun Cui*, Peter Stone

Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse tea…

Learning Optimal Advantage from Preferences and Mistaking it for Reward

AAAI, 2024
W. Bradley Knox*, Stephane Hatgis-Kessell*, Sigurdur Orn Adalgeirsson*, Serena Booth*, Anca Dragan*, Peter Stone, Scott Niekum*

We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments---as used in reinforcement learning from human feedback (RLHF)---including those used to fine tune ChatGPT and other contemporary language models. Most recent work o…

  • HOME
  • Publications
  • Temporal-Logic-Based Reward Shaping for Continuing Reinforcement Learning Tasks


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.