* External authors




Temporal-Logic-Based Reward Shaping for Continuing Reinforcement Learning Tasks

Yuqian Jiang*

Sudarshanan Bharadwaj*

Bo Wu*

Rishi Shah*

Ufuk Topcu*

Peter Stone

* External authors




In continuing tasks, average-reward reinforcement learning may be a more appropriate problem formulation than the more common discounted reward formulation. As usual, learning an optimal policy in this setting typically requires a large amount of training experiences. Reward shaping is a common approach for incorporating domain knowledge into reinforcement learning in order to speed up convergence to an optimal policy. However, to the best of our knowledge, the theoretical properties of reward shaping have thus far only been established in the discounted setting. This paper presents the first reward shaping framework for average-reward learning and proves that, under standard assumptions, the optimal policy under the original reward function can be recovered. In order to avoid the need for manual construction of the shaping function, we introduce a method for utilizing domain knowledge expressed as a temporal logic formula. The formula is automatically translated to a shaping function that provides additional reward throughout the learning process. We evaluate the proposed method on three continuing tasks. In all cases, shaping speeds up the average-reward learning rate without any reduction in the performance of the learned policy compared to relevant baselines.

Related Publications

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Neural Networks, 2023
Megan M. Baker*, Alexander New*, Mario Aguilar-Simon*, Ziad Al-Halah*, Sébastien M. R. Arnold*, Ese Ben-Iwhiwhu*, Andrew P. Brna*, Ethan Brooks*, Ryan C. Brown*, Zachary Daniels*, Anurag Daram*, Fabien Delattre*, Ryan Dellana*, Eric Eaton*, Haotian Fu*, Kristen Grauman*, Jesse Hostetler*, Shariq Iqbal*, Cassandra Kent*, Nicholas Ketz*, Soheil Kolouri*, George Konidaris*, Dhireesha Kudithipudi*, Seungwon Lee*, Michael L. Littman*, Sandeep Madireddy*, Jorge A. Mendez*, Eric Q. Nguyen*, Christine D. Piatko*, Praveen K. Pilly*, Aswin Raghavan*, Abrar Rahman*, Santhosh Kumar Ramakrishnan*, Neale Ratzlaff*, Andrea Soltoggio*, Peter Stone, Indranil Sur*, Zhipeng Tang*, Saket Tiwari*, Kyle Vedder*, Felix Wang*, Zifan Xu*, Angel Yanguas-Gil*, Harel Yedidsion*, Shangqun Yu*, Gautam K. Vallabha*

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to “real world” events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and syst…

Reward (Mis)design for autonomous driving

Artificial Intelligence, 2023
W. Bradley Knox*, Alessandro Allievi*, Holger Banzhaf*, Felix Schmitt*, Peter Stone

This article considers the problem of diagnosing certain common errors in reward design. Its insights are also applicable to the design of cost functions and performance metrics more generally. To diagnose common errors, we develop 8 simple sanity checks for identifying flaw…

Metric Residual Networks for Sample Efficient Goal-Conditioned Reinforcement Learning

AAAI, 2023
Bo Liu*, Yihao Feng*, Qiang Liu*, Peter Stone

Goal-conditioned reinforcement learning (GCRL) has a wide range of potential real-world applications, including manipulation and navigation problems in robotics. Especially in such robotics tasks, sample efficiency is of the utmost importance for GCRL since, by default, the …

  • HOME
  • Publications
  • Temporal-Logic-Based Reward Shaping for Continuing Reinforcement Learning Tasks


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.