Authors

* External authors

Venue

Date

Share

The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications

Serena Booth*

W. Bradley Knox*

Julie Shah*

Scott Niekum*

Peter Stone

Alessandro Allievi*

* External authors

AAAI 2023

2023

Abstract

In reinforcement learning (RL), a reward function that aligns exactly with a task's true performance metric is often sparse. For example, a true task metric might encode a reward of 1 upon success and 0 otherwise. These sparse task metrics can be hard to learn from, so in practice they are often replaced with alternative dense reward functions. These dense reward functions are typically designed by experts through an ad hoc process of trial and error. In this process, experts manually search for a reward function that improves performance with respect to the task metric while also enabling an RL algorithm to learn faster. One question this process raises is whether the same reward function is optimal for all algorithms, or, put differently, whether the reward function can be overfit to a particular algorithm. In this paper, we study the consequences of this wide yet unexamined practice of trial-and-error reward design. We first conduct computational experiments that confirm that reward functions can be overfit to learning algorithms and their hyperparameters. To broadly examine ad hoc reward design, we also conduct a controlled observation study which emulates expert practitioners' typical reward design experiences. Here, we similarly find evidence of reward function overfitting. We also find that experts' typical approach to reward design---of adopting a myopic strategy and weighing the relative goodness of each state-action pair---leads to misdesign through invalid task specifications, since RL algorithms use cumulative reward rather than rewards for individual state-action pairs as an optimization target. Code, data: https://github.com/serenabooth/reward-design-perils.

Related Publications

N-agent Ad Hoc Teamwork

NeurIPS, 2024
Caroline Wang*, Arrasy Rahman*, Ishan Durugkar, Elad Liebman*, Peter Stone

Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algor…

Discovering Creative Behaviors through DUPLEX: Diverse Universal Features for Policy Exploration

NeurIPS, 2024
Borja G. Leon*, Francesco Riccio, Kaushik Subramanian, Pete Wurman, Peter Stone

The ability to approach the same problem from different angles is a cornerstone of human intelligence that leads to robust solutions and effective adaptation to problem variations. In contrast, current RL methodologies tend to lead to policies that settle on a single solutio…

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Pete Wurman, Peter Stone

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

  • HOME
  • Publications
  • The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.