Authors

* External authors

Venue

Date

Share

The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications

Serena Booth*

W. Bradley Knox*

Julie Shah*

Scott Niekum*

Peter Stone

Alessandro Allievi*

* External authors

AAAI 2023

2023

Abstract

In reinforcement learning (RL), a reward function that aligns exactly with a task's true performance metric is often sparse. For example, a true task metric might encode a reward of 1 upon success and 0 otherwise. These sparse task metrics can be hard to learn from, so in practice they are often replaced with alternative dense reward functions. These dense reward functions are typically designed by experts through an ad hoc process of trial and error. In this process, experts manually search for a reward function that improves performance with respect to the task metric while also enabling an RL algorithm to learn faster. One question this process raises is whether the same reward function is optimal for all algorithms, or, put differently, whether the reward function can be overfit to a particular algorithm. In this paper, we study the consequences of this wide yet unexamined practice of trial-and-error reward design. We first conduct computational experiments that confirm that reward functions can be overfit to learning algorithms and their hyperparameters. To broadly examine ad hoc reward design, we also conduct a controlled observation study which emulates expert practitioners' typical reward design experiences. Here, we similarly find evidence of reward function overfitting. We also find that experts' typical approach to reward design---of adopting a myopic strategy and weighing the relative goodness of each state-action pair---leads to misdesign through invalid task specifications, since RL algorithms use cumulative reward rather than rewards for individual state-action pairs as an optimization target. Code, data: https://github.com/serenabooth/reward-design-perils.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.