Authors
- Ryosuke Sawata
- Naoya Takahashi
- Stefan Uhlich*
- Shusuke Takahashi*
- Yuki Mitsufuji
* External authors
Venue
- EURASIP
Date
- 2024
The whole is greater than the sum of its parts: improving music source separation by bridging networks
Stefan Uhlich*
Shusuke Takahashi*
* External authors
EURASIP
2024
Abstract
This paper presents the crossing scheme (X-scheme) for improving the performance of deep neural network (DNN)-based music source separation (MSS) with almost no increasing calculation cost. It consists of three components: (i) multi-domain loss (MDL), (ii) bridging operation, which couples the individual instrument networks, and (iii) combination loss (CL). MDL enables the taking advantage of the frequency- and time-domain representations of audio signals. We modify the target network, i.e., the network architecture of the original DNN-based MSS, by adding bridging paths for each output instrument to share their information. MDL is then applied to the combinations of the output sources as well as each independent source; hence, we called it CL. MDL and CL can easily be applied to many DNN-based separation methods as they are merely loss functions that are only used during training and do not affect the inference step. Bridging operation does not increase the number of learnable parameters in the network. Experimental results showed that the validity of Open-Unmix (UMX), densely connected dilated DenseNet (D3Net) and convolutional time-domain audio separation network (Conv-TasNet) extended with our X-scheme, respectively called X-UMX, X-D3Net and X-Conv-TasNet, by comparing them with their original versions. We also verified the effectiveness of X-scheme in a large-scale data regime, showing its generality with respect to data size.
Related Publications
Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…
Detecting musical versions (different renditions of the same piece) is a challenging task with important applications. Because of the ground truth nature, existing approaches match musical versions at the track level (e.g., whole song). However, most applications require to …
Diffusion models have demonstrated exceptional performances in various fields of generative modeling, but suffer from slow sampling speed due to their iterative nature. While this issue is being addressed in continuous domains, discrete diffusion models face unique challenge…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.