Authors
- Frank Cwitkowitz*
- Kin Wai Cheuk
- Woosung Choi
- Marco A. Martínez-Ramírez
- Keisuke Toyama*
- Wei-Hsiang Liao
- Yuki Mitsufuji
* External authors
Venue
- ICASSP-2024
Date
- 2024
Timbre-Trap: A Low-Resource Framework for Instrument-Agnostic Music Transcription
Frank Cwitkowitz*
Kin Wai Cheuk
Woosung Choi
Marco A. Martínez-Ramírez
Keisuke Toyama*
* External authors
ICASSP-2024
2024
Abstract
In recent years, research on music transcription has focused mainly on architecture design and instrument-specific data acquisition. With the lack of availability of diverse datasets, progress is often limited to solo-instrument tasks such as piano transcription. Several works have explored multi-instrument transcription as a means to bolster the performance of models on low-resource tasks, but these methods face the same data availability issues. We propose Timbre-Trap, a novel framework which unifies music transcription and audio reconstruction by exploiting the strong separability between pitch and timbre. We train a single U-Net to simultaneously estimate pitch salience and reconstruct complex spectral coefficients, selecting between either output during the decoding stage via a simple switch mechanism. In this way, the model learns to produce coefficients corresponding to timbre-less audio, which can be interpreted as pitch salience. We demonstrate that the framework leads to performance comparable to state-of-the-art instrument-agnostic transcription methods, while only requiring a small amount of annotated data.
Related Publications
In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in…
Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward model…
Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a ti…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.