Venue
- ICASSP 2023
Date
- 2023
Towards Adversarially Robust Continual Learning
Tao Bai
Chen Chen
Jun Zhao*
Bihan Wen*
* External authors
ICASSP 2023
2023
Abstract
Recent studies show that models trained by continual learning can achieve the comparable performances as the standard supervised learning and the learning flexibility of continual learning models enables their wide applications in the real world. Deep learning models, however, are shown to be vulnerable to adversarial attacks. Though there are many studies on the model robustness in the context of standard supervised learning, protecting continual learning from adversarial attacks has not yet been investigated. To fill in this research gap, we are the first to study adversarial robustness in continual learning and propose a novel method called Task-Aware Boundary Augmentation (TABA) to boost the robustness of continual learning models. With extensive experiments on CIFAR-10 and CIFAR-100, we show the efficacy of adversarial training and TABA in defending adversarial attacks.
Related Publications
The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…
Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods …
With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in model…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.