Authors

* External authors

Venue

Date

Share

Towards Assessing Data Replication in Music Generation with Music Similarity Metrics on Raw Audio

Roser Batlle-Roca*

Wei-Hsiang Liao

Xavier Serra

Yuki Mitsufuji

Emilia Gómez*

* External authors

ISMIR 2024

2024

Abstract

Recent advancements in music generation are raising multiple concerns about the implications of AI in creative music processes, current business models and impacts related to intellectual property management. A relevant challenge is the potential replication and plagiarism of the training set in AI-generated music, which could lead to misuse of data and intellectual property rights violations. To tackle this issue, we present the Music Replication Assessment (MiRA) tool: a model-independent open evaluation method based on diverse audio music similarity metrics to assess data replication of the training set. We evaluate the ability of five metrics to identify exact replication, by conducting a controlled replication experiment in different music genres based on synthetic samples. Our results show that the proposed methodology can estimate exact data replication with a proportion higher than 10%. By introducing the MiRA tool, we intend to encourage the open evaluation of music generative models by researchers, developers and users concerning data replication, highlighting the importance of ethical, social, legal and economic consequences of generative AI in the music domain.

Related Publications

PaGoDA: Progressive Growing of a One-Step Generator from a Low-Resolution Diffusion Teacher

NeurIPS, 2024
Dongjun Kim*, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, Stefano Ermon*

To accelerate sampling, diffusion models (DMs) are often distilled into generators that directly map noise to data in a single step. In this approach, the resolution of the generator is fundamentally limited by that of the teacher DM. To overcome this limitation, we propose …

GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping

NeurIPS, 2024
Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu, Chieh-Hsin Lai, Seungryong Kim*, Yuki Mitsufuji

Generating novel views from a single image remains a challenging task due to the complexity of 3D scenes and the limited diversity in the existing multi-view datasets to train a model on. Recent research combining large-scale text-to-image (T2I) models with monocular depth e…

The whole is greater than the sum of its parts: improving music source separation by bridging networks

EURASIP, 2024
Ryosuke Sawata, Naoya Takahashi, Stefan Uhlich*, Shusuke Takahashi*, Yuki Mitsufuji

This paper presents the crossing scheme (X-scheme) for improving the performance of deep neural network (DNN)-based music source separation (MSS) with almost no increasing calculation cost. It consists of three components: (i) multi-domain loss (MDL), (ii) bridging operation…

  • HOME
  • Publications
  • Towards Assessing Data Replication in Music Generation with Music Similarity Metrics on Raw Audio

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.