Authors
- Roser Batlle-Roca*
- Wei-Hsiang Liao
- Xavier Serra
- Yuki Mitsufuji
- Emilia Gómez*
* External authors
Venue
- ISMIR 2024
Date
- 2024
Towards Assessing Data Replication in Music Generation with Music Similarity Metrics on Raw Audio
Roser Batlle-Roca*
Xavier Serra
Emilia Gómez*
* External authors
ISMIR 2024
2024
Abstract
Recent advancements in music generation are raising multiple concerns about the implications of AI in creative music processes, current business models and impacts related to intellectual property management. A relevant challenge is the potential replication and plagiarism of the training set in AI-generated music, which could lead to misuse of data and intellectual property rights violations. To tackle this issue, we present the Music Replication Assessment (MiRA) tool: a model-independent open evaluation method based on diverse audio music similarity metrics to assess data replication of the training set. We evaluate the ability of five metrics to identify exact replication, by conducting a controlled replication experiment in different music genres based on synthetic samples. Our results show that the proposed methodology can estimate exact data replication with a proportion higher than 10%. By introducing the MiRA tool, we intend to encourage the open evaluation of music generative models by researchers, developers and users concerning data replication, highlighting the importance of ethical, social, legal and economic consequences of generative AI in the music domain.
Related Publications
Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and recent works have extended it to discrete diffusion. This paper theoretically analyzes CFG in the context of masked discrete …
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditio…
This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



