Authors

* External authors

Venue

Date

Share

Towards Blind Data Cleaning: A Case Study in Music Source Separation

Azalea Gui

Woosung Choi

Junghyun Koo*

Kazuki Shimada

Takashi Shibuya

Joan Serrà

Wei-Hsiang Liao

Yuki Mitsufuji

* External authors

ICASSP-26

2026

Abstract

The performance of deep learning models for music source separation heavily depends on training data quality. However, datasets are often corrupted by difficult-to-detect artifacts such as audio bleeding and label noise. Since the type and extent of contamination are typically unknown, cleaning methods targeting specific corruptions are often impractical. This paper proposes and evaluates two distinct, noise-agnostic data cleaning methods to address this challenge. The first approach uses data attribution via unlearning to identify and filter out training samples that contribute the least to producing clean outputs. The second leverages the Fréchet Audio Distance to measure and remove samples that are perceptually dissimilar to a small and trusted clean reference set. On a dataset contaminated with a simulated distribution of real-world noise, our unlearning-based methods produced a cleaned dataset and a corresponding model that outperforms both the original contaminated data and the small clean reference set used for cleaning. This result closes approximately 66.7\% of the performance gap between the contaminated baseline and a model trained on the same dataset without any contamination. Unlike methods tailored for specific artifacts, our noise-agnostic approaches offer a more generic and broadly applicable solution for curating high-quality training data.

Related Publications

Theory-Informed Improvements to Classifier-Free Guidance for Discrete Diffusion Models

ICLR, 2026
Kevin Rojas, Ye He, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji, Molei Tao

Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and recent works have extended it to discrete diffusion. This paper theoretically analyzes CFG in the context of masked discrete …

3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation

ICLR, 2026
Joungbin Lee, Jaewoo Jung, Jisang Han, Takuya Narihira, Kazumi Fukuda, Junyoung Seo, Sunghwan Hong, Yuki Mitsufuji, Seungryong Kim*

We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditio…

LLM2Fx-Tools: Tool Calling For Music Post-Production

ICLR, 2026
Seungheon Doh, Junghyun Koo*, Marco A. Martínez-Ramírez, Woosung Choi, Wei-Hsiang Liao, Qiyu Wu, Juhan Nam, Yuki Mitsufuji

This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine…

  • HOME
  • Publications
  • Towards Blind Data Cleaning: A Case Study in Music Source Separation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.