Authors

* External authors

Venue

Date

Share

Towards Robustness Certification Against Universal Perturbations

Yi Zeng

Zhouxing Shi*

Ming Jin*

Feiyang Kang*

Lingjuan Lyu

Cho-Jui Hsieh*

Ruoxi Jia*

* External authors

ICLR 2023

2023

Abstract

In this paper, we investigate the problem of certifying neural network robustness against universal perturbations (UPs), which have been widely used in universal adversarial attacks and backdoor attacks. Existing robustness certification methods aim to provide robustness guarantees for each sample with respect to the worst-case perturbations given a neural network. However, those sample-wise bounds will be loose when considering the UP threat model as they overlook the important constraint that the perturbation should be shared across all samples. We propose a method based on a combination of linear relaxation-based perturbation analysis and Mixed Integer Linear Programming to establish the first robust certification method for UP. In addition, we develop a theoretical framework for computing error bounds on the entire population using the certification results from a randomly sampled batch. Aside from an extensive evaluation of the proposed certification, we further show how the certification facilitates efficient comparison of robustness among different models or efficacy among different universal adversarial attack defenses and enables accurate detection of backdoor target classes.

Related Publications

Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?

NeurIPS, 2023
Xiaoxiao Sun*, Nidham Gazagnadou, Vivek Sharma, Lingjuan Lyu, Hongdong Li*, Liang Zheng*

Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Image…

UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition

NeurIPS, 2023
Yuyuan Li*, Chaochao Chen*, Yizhao Zhang*, Weiming Liu*, Lingjuan Lyu, Xiaolin Zheng*, Dan Meng*, Jun Wang*

With growing concerns regarding privacy in machine learning models, regulations have committed to granting individuals the right to be forgotten while mandating companies to develop non-discriminatory machine learning systems, thereby fueling the study of the machine unlearn…

Towards Personalized Federated Learning via Heterogeneous Model Reassembly

NeurIPS, 2023
Jiaqi Wang*, Xingyi Yang*, Suhan Cui*, Liwei Che*, Lingjuan Lyu, Dongkuan Xu*, Fenglong Ma*

This paper focuses on addressing the practical yet challenging problem of model heterogeneity in federated learning, where clients possess models with different network structures. To track this problem, we propose a novel framework called pFedHR, which leverages heterogeneo…

  • HOME
  • Publications
  • Towards Robustness Certification Against Universal Perturbations

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.