Authors

* External authors

Venue

Date

Share

Towards Robustness Certification Against Universal Perturbations

Yi Zeng

Zhouxing Shi*

Ming Jin*

Feiyang Kang*

Lingjuan Lyu

Cho-Jui Hsieh*

Ruoxi Jia*

* External authors

ICLR 2023

2023

Abstract

In this paper, we investigate the problem of certifying neural network robustness against universal perturbations (UPs), which have been widely used in universal adversarial attacks and backdoor attacks. Existing robustness certification methods aim to provide robustness guarantees for each sample with respect to the worst-case perturbations given a neural network. However, those sample-wise bounds will be loose when considering the UP threat model as they overlook the important constraint that the perturbation should be shared across all samples. We propose a method based on a combination of linear relaxation-based perturbation analysis and Mixed Integer Linear Programming to establish the first robust certification method for UP. In addition, we develop a theoretical framework for computing error bounds on the entire population using the certification results from a randomly sampled batch. Aside from an extensive evaluation of the proposed certification, we further show how the certification facilitates efficient comparison of robustness among different models or efficacy among different universal adversarial attack defenses and enables accurate detection of backdoor target classes.

Related Publications

Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Model

WWW, 2025
Jie Ren, Kangrui Chen, Chen Chen, Vikash Sehwag, Yue Xing, Jiliang Tang, Lingjuan Lyu

Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been …

Exploit Gradient Skewness to Circumvent Byzantine Defenses for Federated Learning

AAAI, 2025
Yuchen Liu*, Chen Chen, Lingjuan Lyu, Yaochu Jin, Gang Chen*

Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine r…

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

  • HOME
  • Publications
  • Towards Robustness Certification Against Universal Perturbations

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.