Authors

* External authors

Venue

Date

Share

Twofer: Tackling Continual Domain Shift with Simultaneous Domain Generalization and Adaptation

Chenxi Liu*

Lixu Wang

Lingjuan Lyu

Chen Sun*

Xiao Wang*

Qi Zhu*

* External authors

ICLR 2023

2023

Abstract

In real-world applications, deep learning models often run in non-stationary environments where the target data distribution continually shifts over time. There have been numerous domain adaptation (DA) methods in both online and offline modes to improve cross-domain adaptation ability. However, these DA methods typically only provide good performance after a long period of adaptation and perform poorly on new domains before and during adaptation, especially when domain shifts happen suddenly and momentarily. On the other hand, domain generalization (DG) methods have been proposed to improve the model generalization ability on unadapted domains. However, existing DG works are ineffective for continually changing domains due to severe catastrophic forgetting of learned knowledge. To overcome these limitations of DA or DG in tackling continual domain shifts, we propose Twofer, a framework that simultaneously achieves target domain generalization (TDG), target domain adaptation (TDA), and forgetting alleviation (FA). Twofer includes a training-free data augmentation module to prepare data for TDG, a novel pseudo-labeling mechanism to provide reliable supervision for TDA, and a prototype contrastive alignment algorithm to align different domains for achieving TDG, TDA, and FA. Extensive experiments on Digits, PACS, and Domain Net datasets demonstrate that Twofer substantially outperforms state-of-the-art works in Continual DA, Source-Free DA, Test-Time/Online DA, Single DG, Multiple DG, and Unified DA&DG. We envision this work as a significant milestone in tackling continual data domain shifts, with improved performance across target domain generalization, adaptation, and forgetting alleviation abilities.

Related Publications

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

ICML, 2024
Kartik Patwari, Chen-Nee Chuah*, Lingjuan Lyu, Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …

COALA: A Practical and Vision-Centric Federated Learning Platform

ICML, 2024
Weiming Zhuang, Jian Xu, Chen Chen, Jingtao Li, Lingjuan Lyu

We present COALA, a vision-centric Federated Learning (FL) platform, and a suite of benchmarks for practical FL scenarios, which we categorize as task, data, and model levels. At the task level, COALA extends support from simple classification to 15 computer vision tasks, in…

  • HOME
  • Publications
  • Twofer: Tackling Continual Domain Shift with Simultaneous Domain Generalization and Adaptation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.