Authors
- Yuyuan Li*
- Chaochao Chen*
- Yizhao Zhang*
- Weiming Liu*
- Lingjuan Lyu
- Xiaolin Zheng*
- Dan Meng*
- Jun Wang*
* External authors
Venue
- NeurIPS 2023
Date
- 2023
UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition
Yuyuan Li*
Chaochao Chen*
Yizhao Zhang*
Weiming Liu*
Xiaolin Zheng*
Dan Meng*
Jun Wang*
* External authors
NeurIPS 2023
2023
Abstract
With growing concerns regarding privacy in machine learning models, regulations have committed to granting individuals the right to be forgotten while mandating companies to develop non-discriminatory machine learning systems, thereby fueling the study of the machine unlearning problem. Our attention is directed toward a practical unlearning scenario, i.e., recommendation unlearning. As the state-of-the-art framework, i.e., RecEraser, naturally achieves full unlearning completeness, our objective is to enhance it in terms of model utility and unlearning efficiency. In this paper, we rethink RecEraser from an ensemble-based perspective and focus on its three potential losses, i.e., redundancy, relevance, and combination. Under the theoretical guidance of the above three losses, we propose a new framework named UltraRE, which simplifies and powers RecEraser for recommendation tasks. Specifically, for redundancy loss, we incorporate transport weights in the clustering algorithm to optimize the equilibrium between collaboration and balance while enhancing efficiency; for relevance loss, we ensure that sub-models reach convergence on their respective group data; for combination loss, we simplify the combination estimator without compromising its efficacy. Extensive experiments on three real-world datasets demonstrate the effectiveness of UltraRE.
Related Publications
The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…
Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods …
With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in model…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.