Authors

* External authors

Venue

Date

Share

VRVQ: Variable Bitrate Residual Vector Quantization for Audio Compression

Yunkee Chae

Woosung Choi

Yuhta Takida

Junghyun Koo*

Yukara Ikemiya

Zhi Zhong*

Kin Wai Cheuk

Marco A. Martínez-Ramírez

Kyogu Lee*

Wei-Hsiang Liao

Yuki Mitsufuji

* External authors

ICASSP-25

2025

Abstract

Recent state-of-the-art neural audio compression models have progressively adopted residual vector quantization (RVQ). Despite this success, these models employ a fixed number of codebooks per frame, which can be suboptimal in terms of rate-distortion tradeoff, particularly in scenarios with simple input audio, such as silence. To address this limitation, we propose variable bitrate RVQ (VRVQ) for audio codecs, which allows for more efficient coding by adapting the number of codebooks used per frame. Furthermore, we propose a gradient estimation method for the non-differentiable masking operation that transforms from the importance map to the binary importance mask, improving model training via a straight-through estimator. We demonstrate that the proposed training framework achieves superior results compared to the baseline method and shows further improvement when applied to the current state-of-the-art codec.

Related Publications

Classifier-Free Guidance inside the Attraction Basin May Cause Memorization

CVPR, 2025
Anubhav Jain, Yuya Kobayashi, Takashi Shibuya, Yuhta Takida, Nasir Memon, Julian Togelius, Yuki Mitsufuji

Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel way to unders…

MMAudio: Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis

CVPR, 2025
Ho Kei Cheng, Masato Ishii, Akio Hayakawa, Takashi Shibuya, Alexander Schwing, Yuki Mitsufuji

We propose to synthesize high-quality and synchronized audio, given video and optional text conditions, using a novel multimodal joint training framework MMAudio. In contrast to single-modality training conditioned on (limited) video data only, MMAudio is jointly trained wit…

Latent Diffusion Bridges for Unsupervised Musical Audio Timbre Transfer

ICASSP, 2025
Michele Mancusi, Yurii Halychanskyi, Kin Wai Cheuk, Eloi Moliner, Chieh-Hsin Lai, Stefan Uhlich*, Junghyun Koo*, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Giorgio Fabbro*, Yuki Mitsufuji

Music timbre transfer is a challenging task that involves modifying the timbral characteristics of an audio signal while preserving its melodic structure. In this paper, we propose a novel method based on dual diffusion bridges, trained using the CocoChorales Dataset, which …

  • HOME
  • Publications
  • VRVQ: Variable Bitrate Residual Vector Quantization for Audio Compression

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.