Authors

* External authors

Venue

Date

Share

VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music

Juan M. Huerta*

Bo Liu*

Peter Stone

* External authors

CMMR 2023

2023

Abstract

Automatically varying the number of notes in symbolic music has various applications in assisting music creators to embellish simple tunes or to reduce complex music to its core idea. In this paper, we formulate the problem of varying the number of notes while preserving the essence of the original music. Our method, VaryNote, adopts an autoencoder architecture in combination with a masking mechanism to control the number of notes. To train the weights of the pitch autoencoder we present a novel surrogate divergence, combining the loss of pitch reconstructions with chord predictions end-to-end. We evaluate our results by plotting chord recognition accuracy with increasing and decreasing numbers of notes, analyzing absolute and relative musical features with a probabilistic framework, and by conducting human surveys. The human survey results indicate humans prefer VaryNote output (with 1.5, 1.9 times notes) over the original music, suggesting that it can be a useful tool in music generation applications.

Related Publications

N-agent Ad Hoc Teamwork

NeurIPS, 2024
Caroline Wang*, Arrasy Rahman*, Ishan Durugkar, Elad Liebman*, Peter Stone

Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algor…

Discovering Creative Behaviors through DUPLEX: Diverse Universal Features for Policy Exploration

NeurIPS, 2024
Borja G. Leon*, Francesco Riccio, Kaushik Subramanian, Pete Wurman, Peter Stone

The ability to approach the same problem from different angles is a cornerstone of human intelligence that leads to robust solutions and effective adaptation to problem variations. In contrast, current RL methodologies tend to lead to policies that settle on a single solutio…

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Pete Wurman, Peter Stone

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

  • HOME
  • Publications
  • VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.