Authors

* External authors

Venue

Date

Share

VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music

Juan M. Huerta*

Bo Liu*

Peter Stone

* External authors

CMMR 2023

2023

Abstract

Automatically varying the number of notes in symbolic music has various applications in assisting music creators to embellish simple tunes or to reduce complex music to its core idea. In this paper, we formulate the problem of varying the number of notes while preserving the essence of the original music. Our method, VaryNote, adopts an autoencoder architecture in combination with a masking mechanism to control the number of notes. To train the weights of the pitch autoencoder we present a novel surrogate divergence, combining the loss of pitch reconstructions with chord predictions end-to-end. We evaluate our results by plotting chord recognition accuracy with increasing and decreasing numbers of notes, analyzing absolute and relative musical features with a probabilistic framework, and by conducting human surveys. The human survey results indicate humans prefer VaryNote output (with 1.5, 1.9 times notes) over the original music, suggesting that it can be a useful tool in music generation applications.

Related Publications

Proto Successor Measure: Representing the Space of All Possible Solutions of Reinforcement Learning

ICML, 2025
Siddhant Agarwal*, Harshit Sikchi, Peter Stone, Amy Zhang*

Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…

Hyperspherical Normalization for Scalable Deep Reinforcement Learning

ICML, 2025
Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, Jaegul Choo

Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…

A Champion-level Vision-based Reinforcement Learning Agent for Competitive Racing in Gran Turismo 7

RA-L, 2025
Hojoon Lee, Takuma Seno, Jun Jet Tai, Kaushik Subramanian, Kenta Kawamoto, Peter Stone, Peter R. Wurman

Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting …

  • HOME
  • Publications
  • VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.