* External authors




VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music

Juan M. Huerta*

Bo Liu*

Peter Stone

* External authors

CMMR 2023



Automatically varying the number of notes in symbolic music has various applications in assisting music creators to embellish simple tunes or to reduce complex music to its core idea. In this paper, we formulate the problem of varying the number of notes while preserving the essence of the original music. Our method, VaryNote, adopts an autoencoder architecture in combination with a masking mechanism to control the number of notes. To train the weights of the pitch autoencoder we present a novel surrogate divergence, combining the loss of pitch reconstructions with chord predictions end-to-end. We evaluate our results by plotting chord recognition accuracy with increasing and decreasing numbers of notes, analyzing absolute and relative musical features with a probabilistic framework, and by conducting human surveys. The human survey results indicate humans prefer VaryNote output (with 1.5, 1.9 times notes) over the original music, suggesting that it can be a useful tool in music generation applications.

Related Publications

LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning

NeurIPS, 2023
Bo Liu*, Yifeng Zhu*, Chongkai Gao*, Yihao Feng*, Qiang Liu*, Yuke Zhu*, Peter Stone

Lifelong learning offers a promising paradigm of building a generalist agent that learns and adapts over its lifespan. Unlike traditional lifelong learning problems in image and text domains, which primarily involve the transfer of declarative knowledge of entities and conce…

FAMO: Fast Adaptive Multitask Optimization

NeurIPS, 2023
Bo Liu*, Yihao Feng*, Peter Stone, Qiang Liu*

One of the grand enduring goals of AI is to create generalist agents that can learn multiple different tasks from diverse data via multitask learning (MTL). However, gradient descent (GD) on the average loss across all tasks may yield poor multitask performance due to severe…

Elden: Exploration via Local Dependencies

NeurIPS, 2023
Zizhao Wang*, Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone

Tasks with large state space and sparse reward present a longstanding challenge to reinforcement learning. In these tasks, an agent needs to explore the state space efficiently until it finds reward: the hard exploration problem. To deal with this problem, the community has …

  • HOME
  • Publications
  • VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.