Authors

* External authors

Venue

Date

Share

Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification

Chaochao Chen*

Longfei Zheng*

Huiwen Wu*

Lingjuan Lyu

Jun Zhou*

Jia Wu*

Bingzhe Wu*

Ziqi Liu*

Li Wang*

Xiaolin Zheng*

* External authors

IJCAI 2022

2022

Abstract

Graph Neural Network (GNN) has achieved remarkable progresses in various real-world tasks on graph data. High-performance GNN models always depend on both rich features and complete edge information in graph. However, such information could possibly be isolated by different data holders in practice, which is the so-called data isolation problem. To solve this problem, in this paper, we propose Vertically Federated Graph Neural Network (VFGNN), a federated GNN learning paradigm for privacy-preserving node classification task under data vertically partitioned setting, which can be generalized to existing GNN models. Specifically, we split the computation graph into two parts. We leave the private data (i.e., features, edges, and labels) related computations on data holders, and delegate the rest of computations to a semi-honest server. We also propose to apply differential privacy to prevent potential information leakage from the server. We conduct experiments on three benchmarks and the results demonstrate the effectiveness of VFGNN.

Related Publications

How to Evaluate and Mitigate IP Infringement in Visual Generative AI?

ICML, 2025
Zhenting Wang, Chen Chen, Vikash Sehwag, Minzhou Pan*, Lingjuan Lyu

The popularity of visual generative AI models like DALL-E 3, Stable Diffusion XL, Stable Video Diffusion, and Sora has been increasing. Through extensive evaluation, we discovered that the state-of-the-art visual generative models can generate content that bears a striking r…

Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models

CVPR, 2025
Jie Ren, Kangrui Chen, Yingqian Cui, Shenglai Zeng, Hui Liu, Yue Xing, Jiliang Tang, Lingjuan Lyu

Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, suc…

CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI

CVPR, 2025
Siyuan Cheng, Lingjuan Lyu, Zhenting Wang, Xiangyu Zhang, Vikash Sehwag

With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…

  • HOME
  • Publications
  • Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.