Authors

* External authors

Venue

Date

Share

Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification

Chaochao Chen*

Longfei Zheng*

Huiwen Wu*

Lingjuan Lyu

Jun Zhou*

Jia Wu*

Bingzhe Wu*

Ziqi Liu*

Li Wang*

Xiaolin Zheng*

* External authors

IJCAI 2022

2022

Abstract

Graph Neural Network (GNN) has achieved remarkable progresses in various real-world tasks on graph data. High-performance GNN models always depend on both rich features and complete edge information in graph. However, such information could possibly be isolated by different data holders in practice, which is the so-called data isolation problem. To solve this problem, in this paper, we propose Vertically Federated Graph Neural Network (VFGNN), a federated GNN learning paradigm for privacy-preserving node classification task under data vertically partitioned setting, which can be generalized to existing GNN models. Specifically, we split the computation graph into two parts. We leave the private data (i.e., features, edges, and labels) related computations on data holders, and delegate the rest of computations to a semi-honest server. We also propose to apply differential privacy to prevent potential information leakage from the server. We conduct experiments on three benchmarks and the results demonstrate the effectiveness of VFGNN.

Related Publications

MocoSFL: enabling cross-client collaborative self-supervised learning

ICLR, 2023
Jingtao Li, Lingjuan Lyu, Daisuke Iso, Chaitali Chakrabarti*, Michael Spranger

Existing collaborative self-supervised learning (SSL) schemes are not suitable for cross-client applications because of their expensive computation and large local data requirements. To address these issues, we propose MocoSFL, a collaborative SSL framework based on Split Fe…

IDEAL: Query-Efficient Data-Free Learning from Black-Box Models

ICLR, 2023
Jie Zhang, Chen Chen, Lingjuan Lyu

Knowledge Distillation (KD) is a typical method for training a lightweight student model with the help of a well-trained teacher model. However, most KD methods require access to either the teacher's training data or model parameter, which is unrealistic. To tackle this prob…

Twofer: Tackling Continual Domain Shift with Simultaneous Domain Generalization and Adaptation

ICLR, 2023
Chenxi Liu*, Lixu Wang, Lingjuan Lyu, Chen Sun*, Xiao Wang*, Qi Zhu*

In real-world applications, deep learning models often run in non-stationary environments where the target data distribution continually shifts over time. There have been numerous domain adaptation (DA) methods in both online and offline modes to improve cross-domain adaptat…

  • HOME
  • Publications
  • Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.