Authors

* External authors

Venue

Date

Share

"What We Can’t Measure, We Can’t Understand": Challenges to Demographic Data Procurement in the Pursuit of Fairness

McKane Andrus*

Elena Spitzer*

Jeffrey Brown*

Alice Xiang

* External authors

FAccT-2021

2021

Abstract

As calls for fair and unbiased algorithmic systems increase, so too does the number of individuals working on algorithmic fairness in industry. However, these practitioners often do not have access to the demographic data they feel they need to detect bias in practice. Even with the growing variety of toolkits and strategies for working towards algorithmic fairness, they almost invariably require access to demographic attributes or proxies. We investigated this dilemma through semi-structured interviews with 38 practitioners and professionals either working in or adjacent to algorithmic fairness. Participants painted a complex picture of what demographic data availability and use look like on the ground, ranging from not having access to personal data of any kind to being legally required to collect and use demographic data for discrimination assessments. In many domains, demographic data collection raises a host of difficult questions, including how to balance privacy and fairness, how to define relevant social categories, how to ensure meaningful consent, and whether it is appropriate for private companies to infer someone’s demographics. Our research suggests challenges that must be considered by businesses, regulators, researchers, and community groups in order to enable practitioners to address algorithmic bias in practice. Critically, we do not propose that the overall goal of future work should be to simply lower the barriers to collecting demographic data. Rather, our study surfaces a swath of normative questions about how, when, and whether this data should be procured, and, in cases where it is not, what should still be done to mitigate bias.

Related Publications

Reconciling Legal and Technical Approaches to Algorithmic Bias

Tennessee Law Review, 2021
Alice Xiang

In recent years, there has been a proliferation of papers in the algorithmic fairness literature proposing various technical definitions of algorithmic bias and methods to mitigate bias. Whether these algorithmic bias mitigation methods would be permissible from a legal pers…

On the Validity of Arrest as a Proxy for Offense: Race and the Likelihood of Arrest for Violent Crimes

AIES, 2021
Riccardo Fogliato*, Alice Xiang, Zachary Lipton*, Daniel Nagin*, Alexandra Chouldechova*

The risk of re-offense is considered in decision-making at many stages of the criminal justice system, from pre-trial, to sentencing, to parole. To aid decision makers in their assessments, institutions increasingly rely on algorithmic risk assessment instruments (RAIs). The…

  • HOME
  • Publications
  • "What We Can’t Measure, We Can’t Understand": Challenges to Demographic Data Procurement in the Pursuit of Fairness

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.