Authors

* External authors

Venue

Date

Share

"What's That Robot Doing Here?": Factors Influencing Perceptions Of Incidental Encounters With Autonomous Quadruped Robots.

Elliott Hauser*

Yao-Cheng Chan*

Geethika Hemkumar*

Daksh Dua*

Parth Chonkar*

Efren Mendoza Enriquez*

Tiffany Kao*

Shikhar Gupta*

Huihai Wang*

Justin Hart*

Reuth Mirsky*

Joydeep Biswas*

Junfeng Jiao*

Peter Stone

* External authors

TAS '23

2023

Abstract

Autonomous service robots in a public setting will generate hundreds of incidental human-robot encounters, yet researchers have only recently addressed this important topic in earnest. In this study, we hypothesized that visual indicators of human control, such as a leash on a robot, would impact humans' perceptions of robots in the context of human-robot encounters. A pilot study (n = 26) and a revised study (n = 22) including semi-structured interviews (n = 21) were conducted. The interview data suggested that the presence of another human during the encounter elicited positive reactions from the participants. Counter to these interview findings, the Godspeed-based survey data yielded largely statistically insignificant results between the conditions. We interpret this as evidence that traditional HRI survey instruments focused on the perception of robot characteristics may not be suitable for incidental human-robot encounters research. We suggest that human-robot encounters can be meaningfully characterized by participants' ability or inability to answer implicit questions such as, "what is that robot doing here?". We conclude with recommendations for human-robot encounters research methods and call for research on the intelligibility and acceptability of perceived robot purpose during human-robot encounters.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • "What's That Robot Doing Here?": Factors Influencing Perceptions Of Incidental Encounters With Autonomous Quadruped Robots.

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.