Authors

* External authors

Venue

Date

Share

FedBERT: When Federated Learning Meets Pre-Training

Yuanyishu Tian*

Yao Wan*

Lingjuan Lyu

Dezhong Yao*

Hai Jin*

Lichao Sun*

* External authors

ACM Transactions on Intelligent Systems and Technology

2022

Abstract

The fast growth of pre-trained models (PTMs) has brought natural language processing to a new era, which becomes a dominant technique for various natural language processing (NLP) applications. Every user can download weights of PTMs, then fine-tune the weights on a task on the local side. However, the pre-training of a model relies heavily on accessing a large-scale of training data and requires a vast amount of computing resources. These strict requirements make it impossible for any single client to pre-train such a model. In order to grant clients with limited computing capability to participate in pre-training a large model, in this paper, we propose a new learning approach FedBERT that takes advantage of the federated learning and split learning approaches, resorting to pre-training BERT in a federated way. FedBERT can prevent sharing the raw data information and obtain excellent performance. Extensive experiments on seven GLUE tasks demonstrate that FedBERT can maintain its effectiveness without communicating the sensitive local data of clients.

Related Publications

Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Model

WWW, 2025
Jie Ren, Kangrui Chen, Chen Chen, Vikash Sehwag, Yue Xing, Jiliang Tang, Lingjuan Lyu

Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been …

Exploit Gradient Skewness to Circumvent Byzantine Defenses for Federated Learning

AAAI, 2025
Yuchen Liu*, Chen Chen, Lingjuan Lyu, Yaochu Jin, Gang Chen*

Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine r…

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.