Authors

* External authors

Venue

Date

Share

f-Policy Gradients: A General Framework for Goal-Conditioned RL using f-Divergences

Siddhant Agarwal*

Ishan Durugkar

Amy Zhang*

Peter Stone

* External authors

NeurIPS 2023

2023

Abstract

Goal-Conditioned RL problems provide sparse rewards where the agent receives a reward signal only when it has achieved the goal, making exploration a difficult problem. Several works augment this sparse reward with a learned dense reward function, but this can lead to suboptimality in exploration and misalignment of the task. Moreover, recent works have demonstrated that effective shaping rewards for a particular problem can depend on the underlying learning algorithm. Our work ($f$-PG or $f$-Policy Gradients) shows that minimizing f-divergence between the agent's state visitation distribution and the goal can give us an optimal policy. We derive gradients for various f-divergences to optimize this objective. This objective provides dense learning signals for exploration in sparse reward settings. We further show that entropy maximizing policy optimization for commonly used metric-based shaping rewards like L2 and temporal distance can be reduced to special cases of f-divergences, providing a common ground to study such metric-based shaping rewards. We compare $f$-Policy Gradients with standard policy gradients methods on a challenging gridworld as well as the Point Maze environments.

Related Publications

Proto Successor Measure: Representing the Space of All Possible Solutions of Reinforcement Learning

ICML, 2025
Siddhant Agarwal*, Harshit Sikchi, Peter Stone, Amy Zhang*

Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…

Hyperspherical Normalization for Scalable Deep Reinforcement Learning

ICML, 2025
Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, Jaegul Choo

Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…

A Champion-level Vision-based Reinforcement Learning Agent for Competitive Racing in Gran Turismo 7

RA-L, 2025
Hojoon Lee, Takuma Seno, Jun Jet Tai, Kaushik Subramanian, Kenta Kawamoto, Peter Stone, Peter R. Wurman

Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting …

  • HOME
  • Publications
  • f-Policy Gradients: A General Framework for Goal-Conditioned RL using f-Divergences

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.