Authors

* External authors

Venue

Date

Share

pFedClub: Controllable Heterogeneous Model Aggregation for Personalized Federated Learning

Jiaqi Wang*

Lingjuan Lyu

Fenglong Ma*

Qi Li

* External authors

NeurIPS 2024

2024

Abstract

Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods have emerged to aggregate diverse client models; however, they either lack the ability of personalization, raise privacy and security concerns, need prior knowledge, or ignore the capability and functionality of personalized models. In this paper, we present an innovative approach, named pFedClub, which addresses these challenges. pFedClub introduces personalized federated learning through the substitution of controllable neural network blocks/layers. Initially, pFedClub dissects heterogeneous client models into blocks and organizes them into functional groups on the server. Utilizing the designed CMSR (Controllable Model Searching and Reproduction) algorithm, pFedClub generates a range of personalized candidate models for each client. A model matching technique is then applied to select the optimal personalized model, serving as a teacher model to guide each client’s training process. We conducted extensive experiments across three datasets, examining both IID and non-IID settings. The results demonstrate that pFedClub outperforms baseline approaches, achieving state-of-the-art performance. Moreover, our model insight analysis reveals that pFedClub generates personalized models of reasonable size in a controllable manner, significantly reducing computational costs

Related Publications

How to Evaluate and Mitigate IP Infringement in Visual Generative AI?

ICML, 2025
Zhenting Wang, Chen Chen, Vikash Sehwag, Minzhou Pan*, Lingjuan Lyu

The popularity of visual generative AI models like DALL-E 3, Stable Diffusion XL, Stable Video Diffusion, and Sora has been increasing. Through extensive evaluation, we discovered that the state-of-the-art visual generative models can generate content that bears a striking r…

Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models

CVPR, 2025
Jie Ren, Kangrui Chen, Yingqian Cui, Shenglai Zeng, Hui Liu, Yue Xing, Jiliang Tang, Lingjuan Lyu

Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, suc…

CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI

CVPR, 2025
Siyuan Cheng, Lingjuan Lyu, Zhenting Wang, Xiangyu Zhang, Vikash Sehwag

With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…

  • HOME
  • Publications
  • pFedClub: Controllable Heterogeneous Model Aggregation for Personalized Federated Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.