Authors
- Roberto Capobianco
- Varun Kompella
- James Ault*
- Guni Sharon*
- Stacy Jong*
- Spencer Fox*
- Lauren Meyers*
- Pete Wurman
- Peter Stone
* External authors
Venue
- The Journal of Artificial Intelligence Research
Date
- 2021
Agent-Based Markov Modeling for Improved COVID-19 Mitigation Policies
James Ault*
Guni Sharon*
Stacy Jong*
Spencer Fox*
Lauren Meyers*
* External authors
The Journal of Artificial Intelligence Research
2021
Abstract
The year 2020 saw the covid-19 virus lead to one of the worst global pandemics in history. As a result, governments around the world have been faced with the challenge of protecting public health while keeping the economy running to the greatest extent possible. Epidemiological models provide insight into the spread of these types of diseases and predict the effects of possible intervention policies. However, to date, even the most data-driven intervention policies rely on heuristics. In this paper, we study how reinforcement learning (RL) and Bayesian inference can be used to optimize mitigation policies that minimize economic impact without overwhelming hospital capacity. Our main contributions are (1) a novel agent-based pandemic simulator which, unlike traditional models, is able to model fine-grained interactions among people at specific locations in a community; (2) an RLbased methodology for optimizing fine-grained mitigation policies within this simulator; and (3) a Hidden Markov Model for predicting infected individuals based on partial observations regarding test results, presence of symptoms, and past physical contacts.
Related Publications
Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…
Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…
Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting …
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.