* External authors




Agent-Based Markov Modeling for Improved COVID-19 Mitigation Policies

Roberto Capobianco

Varun Kompella

James Ault*

Guni Sharon*

Stacy Jong*

Spencer Fox*

Lauren Meyers*

Pete Wurman

Peter Stone

* External authors

The Journal of Artificial Intelligence Research



The year 2020 saw the covid-19 virus lead to one of the worst global pandemics in history. As a result, governments around the world have been faced with the challenge of protecting public health while keeping the economy running to the greatest extent possible. Epidemiological models provide insight into the spread of these types of diseases and predict the effects of possible intervention policies. However, to date, even the most data-driven intervention policies rely on heuristics. In this paper, we study how reinforcement learning (RL) and Bayesian inference can be used to optimize mitigation policies that minimize economic impact without overwhelming hospital capacity. Our main contributions are (1) a novel agent-based pandemic simulator which, unlike traditional models, is able to model fine-grained interactions among people at specific locations in a community; (2) an RLbased methodology for optimizing fine-grained mitigation policies within this simulator; and (3) a Hidden Markov Model for predicting infected individuals based on partial observations regarding test results, presence of symptoms, and past physical contacts.

Related Publications

Outracing Champion Gran Turismo Drivers with Deep Reinforcement Learning

Nature, 2022
Pete Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun Kompella, Hao Chih Lin, Patrick MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead Amago, Peter Dürr, Peter Stone, Michael Spranger, Hiroaki Kitano

Many potential applications of artificial intelligence involve making real-time decisions in physical systems while interacting with humans. Automobile racing represents an extreme example of these conditions; drivers must execute complex tactical manoeuvres to pass or block…

Planetary Environment Prediction Using Generative Modeling

AIAA SciTech Forum, 2022
Shrijit Singh*, Shreyansh Daftry*, Roberto Capobianco

Planetary rovers have a limited sensory horizon and operate in environments where limited information about the surrounding terrain is available. The rough and unknown nature of the terrain in planetary environments potentially leads to scenarios where the rover gets stuckan…

Tafl-ES: Exploring Evolution Strategies for Asymmetrical Board Games

AIxIA, 2021
Roberto Gallotta*, Roberto Capobianco

NeuroEvolution Strategies (NES) are a subclass of Evolution Strategies (ES). While their application to games and board games have been studied in the past [11], current state of the art in most of the games is still held by classic RL models, such as AlphaGo Zero [16]. This…

  • HOME
  • Publications
  • Agent-Based Markov Modeling for Improved COVID-19 Mitigation Policies


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.