Authors

* External authors

Venue

Date

Share

Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation

Yutong He

Alexander Robey

Naoki Murata

Yiding Jiang

Joshua Williams

George J. Pappas

Hamed Hassani

Yuki Mitsufuji

Ruslan Salakhutdinov*

J. Zico Kolter*

* External authors

TMLR-25

2025

Abstract

Prompt engineering is an effective but labor-intensive way to control text-to-image (T2I) generative models. Its time-intensive nature and complexity have spurred the development of algorithms for automated prompt generation. However, these methods often struggle with transferability across T2I models, require white-box access to the underlying model, or produce non-intuitive prompts. In this work, we introduce PRISM, an algorithm that automatically produces human-interpretable and transferable prompts that can effectively generate desired concepts given only black-box access to T2I models. Inspired by large language model (LLM) jailbreaking, PRISM leverages the in-context learning ability of LLMs to iteratively refine the candidate prompt distribution built upon the reference images. Our experiments demonstrate the versatility and effectiveness of PRISM in generating accurate prompts for objects, styles, and images across multiple T2I models, including Stable Diffusion, DALL-E, and Midjourney.

Related Publications

Enhancing neural audio fingerprint robustness to audio degradation for music identification

ISMIR, 2025
R. Oguz Araz, Guillem Cortès-Sebastià, Emilio Molina, Joan Serrà, Xavier Serra, Yuki Mitsufuji, Dmitry Bogdanov

Audio fingerprinting (AFP) allows the identification of unknown audio content by extracting compact representations, termed audio fingerprints, that are designed to remain robust against common audio degradations. Neural AFP methods often employ metric learning, where repres…

GLOV: Guided Large Language Models as Implicit Optimizers for Vision Language Models

TMLR, 2025
Muhammad Jehanzeb Mirza, Mengjie Zhao*, Zhuoyuan Mao, Sivan Doveh, Wei Lin, Paul Gavrikov, Michael Dorkenwald, Shiqi Yang*, Saurav Jha, Hiromi Wakaki*, Yuki Mitsufuji

In this work, we propose GLOV, which enables Large Language Models (LLMs) to act as implicit optimizers for Vision-Language Models (VLMs) to enhance downstream vision tasks. GLOV prompts an LLM with the downstream task description, querying it for suitable VLM prompts (e.g.,…

G2D2: Gradient-Guided Discrete Diffusion for Image Inverse Problem Solving

TMLR, 2025
Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Bac Nguyen, Stefano Ermon*, Yuki Mitsufuji

Recent literature has effectively leveraged diffusion models trained on continuous variables as priors for solving inverse problems. Notably, discrete diffusion models with discrete latent codes have shown strong performance, particularly in modalities suited for discrete co…

  • HOME
  • Publications
  • Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.