Authors
- Yangming Li
- Chieh-Hsin Lai
- Carola-Bibiane Schönlieb
- Yuki Mitsufuji
- Stefano Ermon*
* External authors
Venue
- ICLR-25
Date
- 2025
Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space
Yangming Li
Carola-Bibiane Schönlieb
Stefano Ermon*
* External authors
ICLR-25
2025
Abstract
Deep Generative Models (DGMs), including Energy-Based Models (EBMs) and Score-based Generative Models (SGMs), have advanced high-fidelity data generation and complex continuous distribution approximation. However, their application in Markov Decision Processes (MDPs), particularly in distributional Reinforcement Learning (RL), remains underexplored, with conventional histogram-based methods dominating the field. This paper rigorously highlights that this application gap is caused by the nonlinearity of modern DGMs, which conflicts with the linearity required by the Bellman equation in MDPs. For instance, EBMs involve nonlinear operations such as exponentiating energy functions and normalizing constants. To address this, we introduce Bellman Diffusion, a novel DGM framework that maintains linearity in MDPs through gradient and scalar field modeling. With divergence-based training techniques to optimize neural network proxies and a new type of stochastic differential equation (SDE) for sampling, Bellman Diffusion is guaranteed to converge to the target distribution. Our empirical results show that Bellman Diffusion achieves accurate field estimations and is a capable image generator, converging 1.5x faster than the traditional histogram-based baseline in distributional RL tasks. This work enables the effective integration of DGMs into MDP applications, unlocking new avenues for advanced decision-making frameworks.
Related Publications
Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…
Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel way to unders…
We propose to synthesize high-quality and synchronized audio, given video and optional text conditions, using a novel multimodal joint training framework MMAudio. In contrast to single-modality training conditioned on (limited) video data only, MMAudio is jointly trained wit…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.