Authors
- Kin Wai Cheuk
- Toshimitsu Uesaka
- Naoki Murata
- Naoya Takahashi
- Shusuke Takahashi*
- Dorien Herremans*
- Yuki Mitsufuji
* External authors
Venue
- ICASSP 2023
Date
- 2023
DiffRoll: Diffusion-based Generative Music Transcription with Unsupervised Pretraining Capability
Kin Wai Cheuk
Shusuke Takahashi*
Dorien Herremans*
* External authors
ICASSP 2023
2023
Abstract
In this paper we propose a novel generative approach, DiffRoll, to tackle automatic music transcription (AMT).
Instead of treating AMT as a discriminative task in which the model is trained to convert spectrograms into piano rolls, we think of it as a conditional generative task where we train our model to generate realistic looking piano rolls from pure Gaussian noise conditioned on spectrograms.
This new AMT formulation enables DiffRoll to transcribe, generate and even inpaint music. Due to the classifier-free nature, DiffRoll is also able to be trained on unpaired datasets where only piano rolls are available. Our experiments show that DiffRoll outperforms its discriminative counterpart by 19 percentage points (ppt.) and our ablation studies also indicate that it outperforms similar existing methods by 4.8 ppt.
Related Publications
In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in…
Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward model…
Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a ti…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.