Authors
- Naoki Murata
- Yuhta Takida
- Toshimitsu Uesaka
- Takashi Shibuya
- Shusuke Takahashi*
- Yuki Mitsufuji
* External authors
Venue
- Interspeech '23
Date
- 2023
Diffiner: A Versatile Diffusion-based Generative Refiner for Speech Enhancement
Shusuke Takahashi*
* External authors
Interspeech '23
2023
Abstract
Although deep neural network (DNN)-based speech enhancement (SE) methods outperform the previous non-DNN-based ones, they often degrade the perceptual quality of generated outputs. To tackle this problem, we introduce a DNN-based generative refiner, Diffiner, aiming to improve perceptual speech quality pre-processed by an SE method. We train a diffusion-based generative model by utilizing a dataset consisting of clean speech only. Then, our refiner effectively mixes clean parts newly generated via denoising diffusion restoration into the degraded and distorted parts caused by a preceding SE method, resulting in refined speech. Once our refiner is trained on a set of clean speech, it can be applied to various SE methods without additional training specialized for each SE module. Therefore, our refiner can be a versatile post-processing module w.r.t. SE methods and has high potential in terms of modularity. Experimental results show that our method improved perceptual speech quality regardless of the preceding SE methods used.
Related Publications
Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…
Detecting musical versions (different renditions of the same piece) is a challenging task with important applications. Because of the ground truth nature, existing approaches match musical versions at the track level (e.g., whole song). However, most applications require to …
Diffusion models have demonstrated exceptional performances in various fields of generative modeling, but suffer from slow sampling speed due to their iterative nature. While this issue is being addressed in continuous domains, discrete diffusion models face unique challenge…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.