Authors

* External authors

Venue

Date

Share

Large-Scale Training Data Attribution for Music Generative Models via Unlearning

Woosung Choi

Junghyun Koo*

Kin Wai Cheuk

Joan Serrà

Marco A. Martínez-Ramírez

Yukara Ikemiya

Naoki Murata

Yuhta Takida

Wei-Hsiang Liao

Yuki Mitsufuji

* External authors

NeurIPS-25

2025

Abstract

This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific model. This is crucial in the context of AI-generated music, where proper recognition and credit for original artists are generally overlooked. By enabling white-box attribution, our work supports a fairer system for acknowledging artistic contributions and addresses pressing concerns related to AI ethics and copyright. We apply unlearning-based attribution to a text-to-music diffusion model trained on a large-scale dataset and investigate its feasibility and behavior in this setting. To validate the method, we perform a grid search over different hyperparameter configurations and quantitatively evaluate the consistency of the unlearning approach. We then compare attribution patterns from unlearning with those from a similarity-based approach. Our findings suggest that unlearning-based approaches can be effectively adapted to music generative models, introducing large-scale TDA to this domain and paving the way for more ethical and accountable AI systems for music creation.

Related Publications

Music Arena: Live Evaluation for Text-to-Music

NeurIPS, 2025
Yonghyun Kim, Wayne Chi, Anastasios N. Angelopoulos, Wei-Lin Chiang, Koichi Saito, Shinji Watanabe, Yuki Mitsufuji, Chris Donahue

We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…

Blind Inverse Problem Solving Made Easy by Text-to-Image Latent Diffusion

NeurIPS, 2025
Michail Dontas, Yutong He, Naoki Murata, Yuki Mitsufuji, J. Zico Kolter*, Ruslan Salakhutdinov*

Blind inverse problems, where both the target data and forward operator are unknown, are crucial to many computer vision applications. Existing methods often depend on restrictive assumptions such as additional training, operator linearity, or narrow image distributions, thu…

Enhancing neural audio fingerprint robustness to audio degradation for music identification

ISMIR, 2025
R. Oguz Araz, Guillem Cortès-Sebastià, Emilio Molina, Joan Serrà, Xavier Serra, Yuki Mitsufuji, Dmitry Bogdanov

Audio fingerprinting (AFP) allows the identification of unknown audio content by extracting compact representations, termed audio fingerprints, that are designed to remain robust against common audio degradations. Neural AFP methods often employ metric learning, where repres…

  • HOME
  • Publications
  • Large-Scale Training Data Attribution for Music Generative Models via Unlearning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.