Authors

* External authors

Venue

Date

Share

Latent Diffusion Bridges for Unsupervised Musical Audio Timbre Transfer

Michele Mancusi

Yurii Halychanskyi

Kin Wai Cheuk

Eloi Moliner

Chieh-Hsin Lai

Stefan Uhlich*

Junghyun Koo*

Marco A. Martínez-Ramírez

Wei-Hsiang Liao

Giorgio Fabbro*

Yuki Mitsufuji

* External authors

ICASSP-25

2025

Abstract

Music timbre transfer is a challenging task that involves modifying the timbral characteristics of an audio signal while preserving its melodic structure. In this paper, we propose a novel method based on dual diffusion bridges, trained using the CocoChorales Dataset, which consists of unpaired monophonic single-instrument audio data. Each diffusion model is trained on a specific instrument with a Gaussian prior. During inference, a model is designated as the source model to map the input audio to its corresponding Gaussian prior, and another model is designated as the target model to reconstruct the target audio from this Gaussian prior, thereby facilitating timbre transfer. We compare our approach against existing unsupervised timbre transfer models such as VAEGAN and Gaussian Flow Bridges (GFB). Experimental results demonstrate that our method achieves both better Fréchet Audio Distance (FAD) and melody preservation, as reflected by lower pitch distances (DPD) compared to VAEGAN and GFB. Additionally, we discover that the noise level from the Gaussian prior, σ, can be adjusted to control the degree of melody preservation and amount of timbre transferred.

Related Publications

Can Large Language Models Predict Audio Effects Parameters from Natural Language?

WASPAA, 2025
Seungheon Doh, Junghyun Koo*, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Juhan Nam, Yuki Mitsufuji

In music production, manipulating audio effects (Fx) parameters through natural language has the potential to reduce technical barriers for non-experts. We present LLM2Fx, a framework leveraging Large Language Models (LLMs) to predict Fx parameters directly from textual desc…

Large-Scale Training Data Attribution for Music Generative Models via Unlearning

ICML, 2025
Woosung Choi, Junghyun Koo*, Kin Wai Cheuk, Joan Serrà, Marco A. Martínez-Ramírez, Yukara Ikemiya, Naoki Murata, Yuhta Takida, Wei-Hsiang Liao, Yuki Mitsufuji

This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…

Fx-Encoder++: Extracting Instrument-Wise Audio Effects Representations from Mixtures

ISMIR, 2025
Yen-Tung Yeh, Junghyun Koo*, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Yi-Hsuan Yang, Yuki Mitsufuji

General-purpose audio representations have proven effective across diverse music information retrieval applications, yet their utility in intelligent music production remains limited by insufficient understanding of audio effects (Fx). Although previous approaches have empha…

  • HOME
  • Publications
  • Latent Diffusion Bridges for Unsupervised Musical Audio Timbre Transfer

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.