Authors
- Kengo Uchida
- Takashi Shibuya
- Yuhta Takida
- Naoki Murata
- Julian Tanke
- Shusuke Takahashi*
- Yuki Mitsufuji
* External authors
Venue
- CVPR-25
Date
- 2025
MoLA: Motion Generation and Editing with Latent Diffusion Enhanced by Adversarial Training
Julian Tanke
Shusuke Takahashi*
* External authors
CVPR-25
2025
Abstract
In text-to-motion generation, controllability as well as generation quality and speed has become increasingly critical. The controllability challenges include generating a motion of a length that matches the given textual description and editing the generated motions according to control signals, such as the start-end positions and the pelvis trajectory. In this paper, we propose MoLA, which provides fast, high-quality, variable-length motion generation and can also deal with multiple editing tasks in a single framework. Our approach revisits the motion representation used as inputs and outputs in the model, incorporating an activation variable to enable variable-length motion generation. Additionally, we integrate a variational autoencoder and a latent diffusion model, further enhanced through adversarial training, to achieve high-quality and fast generation. Moreover, we apply a training-free guided generation framework to achieve various editing tasks with motion control inputs. We quantitatively show the effectiveness of adversarial learning in text-to-motion generation, and demonstrate the applicability of our editing framework to multiple editing tasks in the motion domain.
Related Publications
We introduce Vid-CamEdit, a novel framework for video camera trajectory editing, enabling the re-synthesis of monocular videos along user-defined camera paths. This task is challenging due to its ill-posed nature and the limited multi-view video data for training. Traditiona…
Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided methods rely on pretrained diffusion models by involving forward-backward diffusion processes for editing…
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



