Authors
- Koichi Saito
- Dongjun Kim*
- Takashi Shibuya
- Chieh-Hsin Lai
- Zhi Zhong*
- Yuhta Takida
- Yuki Mitsufuji
* External authors
Venue
- ICLR-25
Date
- 2025
SoundCTM: Unifying Score-based and Consistency Models for Full-band Text-to-Sound Generation
Koichi Saito
Dongjun Kim*
Zhi Zhong*
* External authors
ICLR-25
2025
Abstract
Sound content creation, essential for multimedia works such as video games and films, often involves extensive trial-and-error, enabling creators to semantically reflect their artistic ideas and inspirations, which evolve throughout the creation process, into the sound. Recent high-quality diffusion-based Text-to-Sound (T2S) generative models provide valuable tools for creators. However, these models often suffer from slow inference speeds, imposing an undesirable burden that hinders the trial-and-error process. While existing T2S distillation models address this limitation through
-step generation, the sample quality of
-step generation remains insufficient for production use. Additionally, while multi-step sampling in those distillation models improves sample quality itself, the semantic content changes due to their lack of deterministic sampling capabilities. Thus, developing a T2S generative model that allows creators to efficiently conduct trial-and-error while producing high-quality sound remains a key challenge. To address these issues, we introduce Sound Consistency Trajectory Models (SoundCTM), which allow flexible transitions between high-quality
-step sound generation and superior sound quality through multi-step deterministic sampling. This allows creators to efficiently conduct trial-and-error with
-step generation to semantically align samples with their intention, and subsequently refine sample quality with preserving semantic content through deterministic multi-step sampling. To develop SoundCTM, we reframe the CTM training framework, originally proposed in computer vision, and introduce a novel feature distance using the teacher network for a distillation loss. Additionally, while distilling classifier-free guided trajectories, we introduce a
-sampling, a new algorithm that offers another source of quality improvement. For the
-sampling, we simultaneously train both conditional and unconditional student models. For production-level generation, we scale up our model to 1B trainable parameters, making SoundCTM-DiT-1B the first large-scale distillation model in the sound community to achieve both promising high-quality
-step and multi-step full-band (44.1kHz) generation.
Related Publications
Deep Generative Models (DGMs), including Energy-Based Models (EBMs) and Score-based Generative Models (SGMs), have advanced high-fidelity data generation and complex continuous distribution approximation. However, their application in Markov Decision Processes (MDPs), partic…
Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…
Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel way to unders…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.