Authors

Venue

Date

Share

Training Consistency Models with Variational Noise Coupling

Gianluigi Silvestri

Luca Ambrogioni

Chieh-Hsin Lai

Yuhta Takida

Yuki Mitsufuji

ICML-25

2025

Abstract

Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and improving its training dynamics is an active area of research. In this work, we propose a novel CT training approach based on the Flow Matching framework. Our main contribution is a trained noise-coupling scheme inspired by the architecture of Variational Autoencoders (VAE). By training a data-dependent noise emission model implemented as an encoder architecture, our method can indirectly learn the geometry of the noise-to-data mapping, which is instead fixed by the choice of the forward process in classical CT. Empirical results across diverse image datasets show significant generative improvements, with our model outperforming baselines and achieving the state-of-the-art (SoTA) non-distillation CT FID on CIFAR-10, and attaining FID on par with SoTA on ImageNet at 64×64 resolution in 2-step generation.

Related Publications

A Comprehensive Real-World Assessment of Audio Watermarking Algorithms: Will They Survive Neural Codecs?

Interspeech, 2025
Yigitcan Özer, Woosung Choi, Joan Serrà, Mayank Kumar Singh*, Wei-Hsiang Liao, Yuki Mitsufuji

We introduce the Robust Audio Watermarking Benchmark (RAW-Bench), a benchmark for evaluating deep learning-based audio watermarking methods with standardized and systematic comparisons. To simulate real-world usage, we introduce a comprehensive audio attack pipeline with var…

Supervised Contrastive Learning from Weakly-labeled Audio Segments for Musical Version Matching

ICML, 2025
Joan Serrà, R. Oguz Araz, Dmitry Bogdanov, Yuki Mitsufuji

Detecting musical versions (different renditions of the same piece) is a challenging task with important applications. Because of the ground truth nature, existing approaches match musical versions at the track level (e.g., whole song). However, most applications require to …

Distillation of Discrete Diffusion through Dimensional Correlations

ICML, 2025
Satoshi Hayakawa, Yuhta Takida, Masaaki Imaizumi*, Hiromi Wakaki*, Yuki Mitsufuji

Diffusion models have demonstrated exceptional performances in various fields of generative modeling, but suffer from slow sampling speed due to their iterative nature. While this issue is being addressed in continuous domains, discrete diffusion models face unique challenge…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.