Authors

* External authors

Venue

Date

Share

Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion

Dongjun Kim*

Chieh-Hsin Lai

Wei-Hsiang Liao

Naoki Murata

Yuhta Takida

Toshimitsu Uesaka

Yutong He

Yuki Mitsufuji

Stefano Ermon*

* External authors

ICLR 2024

2024

Abstract

Consistency Models (CM) (Song et al., 2023) accelerate score-based diffusion model sampling at the cost of sample quality but lack a natural way to trade-off quality for speed. To address this limitation, we propose Consistency Trajectory Model (CTM), a generalization encompassing CM and score-based models as special cases. CTM trains a single neural network that can -- in a single forward pass -- output scores (i.e., gradients of log-density) and enables unrestricted traversal between any initial and final time along the Probability Flow Ordinary Differential Equation (ODE) in a diffusion process. CTM enables the efficient combination of adversarial training and denoising score matching loss to enhance performance and achieves new state-of-the-art FIDs for single-step diffusion model sampling on CIFAR-10 (FID 1.73) and ImageNet at 64X64 resolution (FID 2.06). CTM also enables a new family of sampling schemes, both deterministic and stochastic, involving long jumps along the ODE solution trajectories. It consistently improves sample quality as computational budgets increase, avoiding the degradation seen in CM. Furthermore, CTM's access to the score accommodates all diffusion model inference techniques, including exact likelihood computation.

Related Publications

PaGoDA: Progressive Growing of a One-Step Generator from a Low-Resolution Diffusion Teacher

NeurIPS, 2024
Dongjun Kim*, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, Stefano Ermon*

To accelerate sampling, diffusion models (DMs) are often distilled into generators that directly map noise to data in a single step. In this approach, the resolution of the generator is fundamentally limited by that of the teacher DM. To overcome this limitation, we propose …

GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping

NeurIPS, 2024
Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu, Chieh-Hsin Lai, Seungryong Kim*, Yuki Mitsufuji

Generating novel views from a single image remains a challenging task due to the complexity of 3D scenes and the limited diversity in the existing multi-view datasets to train a model on. Recent research combining large-scale text-to-image (T2I) models with monocular depth e…

The whole is greater than the sum of its parts: improving music source separation by bridging networks

EURASIP, 2024
Ryosuke Sawata, Naoya Takahashi, Stefan Uhlich*, Shusuke Takahashi*, Yuki Mitsufuji

This paper presents the crossing scheme (X-scheme) for improving the performance of deep neural network (DNN)-based music source separation (MSS) with almost no increasing calculation cost. It consists of three components: (i) multi-domain loss (MDL), (ii) bridging operation…

  • HOME
  • Publications
  • Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.