Authors

* External authors

Venue

Date

Share

FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the Underlying Score Fokker-Planck Equation

Chieh-Hsin Lai

Yuhta Takida

Naoki Murata

Toshimitsu Uesaka

Yuki Mitsufuji

Stefano Ermon*

* External authors

ICML 2023

2023

Abstract

Score-based generative models learn a family of noise-conditional score functions corresponding to the data density perturbed with increasingly large amounts of noise. These perturbed data densities are tied together by the Fokker-Planck equation (FPE), a partial differential equation (PDE) governing the spatial-temporal evolution of a density undergoing a diffusion process. In this work, we derive a corresponding equation, called the score FPE that characterizes the noise-conditional scores of the perturbed data densities (i.e., their gradients). Surprisingly, despite impressive empirical performance, we observe that scores learned via denoising score matching (DSM) do not satisfy the underlying score FPE. We prove that satisfying the FPE is desirable as it improves the likelihood and the degree of conservativity. Hence, we propose to regularize the DSM objective to enforce satisfaction of the score FPE, and we show the effectiveness of this approach across various datasets.

Related Publications

Training Consistency Models with Variational Noise Coupling

ICML, 2025
Gianluigi Silvestri, Luca Ambrogioni, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji

Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…

Supervised Contrastive Learning from Weakly-labeled Audio Segments for Musical Version Matching

ICML, 2025
Joan Serrà, R. Oguz Araz, Dmitry Bogdanov, Yuki Mitsufuji

Detecting musical versions (different renditions of the same piece) is a challenging task with important applications. Because of the ground truth nature, existing approaches match musical versions at the track level (e.g., whole song). However, most applications require to …

Distillation of Discrete Diffusion through Dimensional Correlations

ICML, 2025
Satoshi Hayakawa, Yuhta Takida, Masaaki Imaizumi*, Hiromi Wakaki*, Yuki Mitsufuji

Diffusion models have demonstrated exceptional performances in various fields of generative modeling, but suffer from slow sampling speed due to their iterative nature. While this issue is being addressed in continuous domains, discrete diffusion models face unique challenge…

  • HOME
  • Publications
  • FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the Underlying Score Fokker-Planck Equation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.