Venue

Date

Share

HQ-VAE: Hierarchical Discrete Representation Learning with Variational Bayes

Yuhta Takida

Yukara Ikemiya

Takashi Shibuya

Kazuki Shimada

Woosung Choi

Chieh-Hsin Lai

Naoki Murata

Toshimitsu Uesaka

Kengo Uchida

Yuki Mitsufuji

Wei-Hsiang Liao

TMLR-2024

2024

Abstract

Vector quantization (VQ) is a technique to deterministically learn features with discrete codebook representations. It is commonly performed with a variational autoencoding model, VQ-VAE, which can be further extended to hierarchical structures for making high-fidelity reconstructions. However, such hierarchical extensions of VQ-VAE often suffer from the codebook/layer collapse issue, where the codebook is not efficiently used to express the data, and hence degrades reconstruction accuracy. To mitigate this problem, we propose a novel unified framework to stochastically learn hierarchical discrete representation on the basis of the variational Bayes framework, called hierarchically quantized variational autoencoder (HQ-VAE). HQ-VAE naturally generalizes the hierarchical variants of VQ-VAE, such as VQ-VAE-2 and residual-quantized VAE (RQ-VAE), and provides them with a Bayesian training scheme. Our comprehensive experiments on image datasets show that HQ-VAE enhances codebook usage and improves reconstruction performance. We also validated HQ-VAE in terms of its applicability to a different modality with an audio dataset.



Related Publications

Vid-CamEdit: Video Camera Trajectory Editing with Generative Rendering from Estimated Geometry

AAAI, 2025
Junyoung Seo, Jisang Han, Jaewoo Jung, Siyoon Jin, Joungbin Lee, Takuya Narihira, Kazumi Fukuda, Takashi Shibuya, Donghoon Ahn, Shoukang Hu, Seungryong Kim*, Yuki Mitsufuji

We introduce Vid-CamEdit, a novel framework for video camera trajectory editing, enabling the re-synthesis of monocular videos along user-defined camera paths. This task is challenging due to its ill-posed nature and the limited multi-view video data for training. Traditiona…

SteerMusic: Enhanced Musical Consistency for Zero-shot Text-Guided and Personalized Music Editing

AAAI, 2025
Xinlei Niu, Kin Wai Cheuk, Jing Zhang, Naoki Murata, Chieh-Hsin Lai, Michele Mancusi, Woosung Choi, Giorgio Fabbro*, Wei-Hsiang Liao, Charles Patrick Martin, Yuki Mitsufuji

Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided methods rely on pretrained diffusion models by involving forward-backward diffusion processes for editing…

Music Arena: Live Evaluation for Text-to-Music

NeurIPS, 2025
Yonghyun Kim, Wayne Chi, Anastasios N. Angelopoulos, Wei-Lin Chiang, Koichi Saito, Shinji Watanabe, Yuki Mitsufuji, Chris Donahue

We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…

  • HOME
  • Publications
  • HQ-VAE: Hierarchical Discrete Representation Learning with Variational Bayes

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.