Venue

Date

Share

HQ-VAE: Hierarchical Discrete Representation Learning with Variational Bayes

Yuhta Takida

Yukara Ikemiya

Takashi Shibuya

Kazuki Shimada

Woosung Choi

Chieh-Hsin Lai

Naoki Murata

Toshimitsu Uesaka

Kengo Uchida

Yuki Mitsufuji

Wei-Hsiang Liao

TMLR-2024

2024

Abstract

Vector quantization (VQ) is a technique to deterministically learn features with discrete codebook representations. It is commonly performed with a variational autoencoding model, VQ-VAE, which can be further extended to hierarchical structures for making high-fidelity reconstructions. However, such hierarchical extensions of VQ-VAE often suffer from the codebook/layer collapse issue, where the codebook is not efficiently used to express the data, and hence degrades reconstruction accuracy. To mitigate this problem, we propose a novel unified framework to stochastically learn hierarchical discrete representation on the basis of the variational Bayes framework, called hierarchically quantized variational autoencoder (HQ-VAE). HQ-VAE naturally generalizes the hierarchical variants of VQ-VAE, such as VQ-VAE-2 and residual-quantized VAE (RQ-VAE), and provides them with a Bayesian training scheme. Our comprehensive experiments on image datasets show that HQ-VAE enhances codebook usage and improves reconstruction performance. We also validated HQ-VAE in terms of its applicability to a different modality with an audio dataset.



Related Publications

Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric

ICLR, 2025
Toshimitsu Uesaka, Taiji Suzuki, Yuhta Takida, Chieh-Hsin Lai, Naoki Murata, Yuki Mitsufuji

In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in…

Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning

ICLR, 2025
Shang-Fu Chen, Chieh-Hsin Lai, Dongjun Kim*, Naoki Murata, Takashi Shibuya, Wei-Hsiang Liao, Shao-Hua Sun, Yuki Mitsufuji, Ayano Hiranaka

Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward model…

Mining your own secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models

ICLR, 2025
Saurav Jha, Shiqi Yang*, Masato Ishii, Mengjie Zhao*, Christian Simon, Muhammad Jehanzeb Mirza, Dong Gong, Lina Yao, Shusuke Takahashi*, Yuki Mitsufuji

Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a ti…

  • HOME
  • Publications
  • HQ-VAE: Hierarchical Discrete Representation Learning with Variational Bayes

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.