Authors

* External authors

Venue

Date

Share

Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning

Shang-Fu Chen

Chieh-Hsin Lai

Dongjun Kim*

Naoki Murata

Takashi Shibuya

Wei-Hsiang Liao

Shao-Hua Sun

Yuki Mitsufuji

Ayano Hiranaka

* External authors

ICLR-25

2025

Abstract

Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward models built on large-scale datasets, limiting their applicability to scenarios where collecting such data is costly or difficult. To effectively and efficiently utilize human feedback, we develop a framework, HERO, which leverages online human feedback collected on the fly during model learning. Specifically, HERO features two key mechanisms: (1) Feedback-Aligned Representation Learning, an online training method that captures human feedback and provides informative learning signals for fine-tuning, and (2) Feedback-Guided Image Generation, which involves generating images from SD's refined initialization samples, enabling faster convergence towards the evaluator's intent. We demonstrate that HERO is 4x more efficient in online feedback for body part anomaly correction compared to the best existing method. Additionally, experiments show that HERO can effectively handle tasks like reasoning, counting, personalization, and reducing NSFW content with only 0.5K online feedback.

Related Publications

Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space

ICLR, 2025
Yangming Li, Chieh-Hsin Lai, Carola-Bibiane Schönlieb, Yuki Mitsufuji, Stefano Ermon*

Deep Generative Models (DGMs), including Energy-Based Models (EBMs) and Score-based Generative Models (SGMs), have advanced high-fidelity data generation and complex continuous distribution approximation. However, their application in Markov Decision Processes (MDPs), partic…

Training Consistency Models with Variational Noise Coupling

ICLR, 2025
Gianluigi Silvestri, Luca Ambrogioni, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji

Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…

Classifier-Free Guidance inside the Attraction Basin May Cause Memorization

CVPR, 2025
Anubhav Jain, Yuya Kobayashi, Takashi Shibuya, Yuhta Takida, Nasir Memon, Julian Togelius, Yuki Mitsufuji

Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel way to unders…

  • HOME
  • Publications
  • Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.