Authors
- Shang-Fu Chen
- Chieh-Hsin Lai
- Dongjun Kim*
- Naoki Murata
- Takashi Shibuya
- Wei-Hsiang Liao
- Shao-Hua Sun
- Yuki Mitsufuji
- Ayano Hiranaka
* External authors
Venue
- ICLR-25
Date
- 2025
Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning
Shang-Fu Chen
Dongjun Kim*
Shao-Hua Sun
Ayano Hiranaka
* External authors
ICLR-25
2025
Abstract
Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward models built on large-scale datasets, limiting their applicability to scenarios where collecting such data is costly or difficult. To effectively and efficiently utilize human feedback, we develop a framework, HERO, which leverages online human feedback collected on the fly during model learning. Specifically, HERO features two key mechanisms: (1) Feedback-Aligned Representation Learning, an online training method that captures human feedback and provides informative learning signals for fine-tuning, and (2) Feedback-Guided Image Generation, which involves generating images from SD's refined initialization samples, enabling faster convergence towards the evaluator's intent. We demonstrate that HERO is 4x more efficient in online feedback for body part anomaly correction compared to the best existing method. Additionally, experiments show that HERO can effectively handle tasks like reasoning, counting, personalization, and reducing NSFW content with only 0.5K online feedback.
Related Publications
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…
This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…
Blind inverse problems, where both the target data and forward operator are unknown, are crucial to many computer vision applications. Existing methods often depend on restrictive assumptions such as additional training, operator linearity, or narrow image distributions, thu…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.