Venue
- IJCNN-25
Date
- 2025
Improving Vector-Quantized Image Modeling with Latent Consistency-Matching Diffusion
IJCNN-25
2025
Abstract
By embedding discrete representations into a continuous latent space, we can leverage continuous-space latent diffusion models to handle generative modeling of discrete data. However, despite their initial success, most latent diffusion methods rely on fixed pretrained embeddings, limiting the benefits of joint training with the diffusion model. While jointly learning the embedding (via reconstruction loss) and the latent diffusion model (via score matching loss) could enhance performance, end-to-end training risks embedding collapse, degrading generation quality. To mitigate this issue, we introduce VQ-LCMD, a continuous-space latent diffusion framework within the embedding space that stabilizes training. VQ-LCMD uses a novel training objective combining the joint embedding-diffusion variational lower bound with a consistency-matching (CM) loss, alongside a shifted cosine noise schedule and random dropping strategy. Experiments on several benchmarks show that the proposed VQ-LCMD yields superior results on FFHQ, LSUN Churches, and LSUN Bedrooms compared to discrete-state latent diffusion models. In particular, VQ-LCMD achieves an FID of 6.81 for class-conditional image generation on ImageNet with 50 steps.
Related Publications
We introduce Vid-CamEdit, a novel framework for video camera trajectory editing, enabling the re-synthesis of monocular videos along user-defined camera paths. This task is challenging due to its ill-posed nature and the limited multi-view video data for training. Traditiona…
Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided methods rely on pretrained diffusion models by involving forward-backward diffusion processes for editing…
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



