Authors
- Carlos Hernandez-Olivan*
- Koichi Saito
- Naoki Murata
- Chieh-Hsin Lai
- Marco A. Martínez-Ramírez
- Wei-Hsiang Liao
- Yuki Mitsufuji
* External authors
Venue
- ICASSP 2024
Date
- 2023
VRDMG: Vocal Restoration via Diffusion Posterior Sampling with Multiple Guidance
Carlos Hernandez-Olivan*
Koichi Saito
Marco A. Martínez-Ramírez
* External authors
ICASSP 2024
2023
Abstract
Restoring degraded music signals is essential to enhance audio quality for downstream music manipulation. Recent diffusion-based music restoration methods have demonstrated impressive performance, and among them, diffusion posterior sampling (DPS) stands out given its intrinsic properties, making it versatile across various restoration tasks. In this paper, we identify that there are potential issues which will degrade current DPS-based methods' performance and introduce the way to mitigate the issues inspired by diverse diffusion guidance techniques including the RePaint (RP) strategy and the Pseudoinverse-Guided Diffusion Models (ΠGDM). We demonstrate our methods for the vocal declipping and bandwidth extension tasks under various levels of distortion and cutoff frequency, respectively. In both tasks, our methods outperform the current DPS-based music restoration benchmarks. We refer to \url{this http URL} for examples of the restored audio samples.
Related Publications
Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…
Detecting musical versions (different renditions of the same piece) is a challenging task with important applications. Because of the ground truth nature, existing approaches match musical versions at the track level (e.g., whole song). However, most applications require to …
Diffusion models have demonstrated exceptional performances in various fields of generative modeling, but suffer from slow sampling speed due to their iterative nature. While this issue is being addressed in continuous domains, discrete diffusion models face unique challenge…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.