Authors

* External authors

Venue

Date

Share

VRDMG: Vocal Restoration via Diffusion Posterior Sampling with Multiple Guidance

Carlos Hernandez-Olivan*

Koichi Saito

Naoki Murata

Chieh-Hsin Lai

Marco A. Martínez-Ramírez

Wei-Hsiang Liao

Yuki Mitsufuji

* External authors

ICASSP 2024

2023

Abstract

Restoring degraded music signals is essential to enhance audio quality for downstream music manipulation. Recent diffusion-based music restoration methods have demonstrated impressive performance, and among them, diffusion posterior sampling (DPS) stands out given its intrinsic properties, making it versatile across various restoration tasks. In this paper, we identify that there are potential issues which will degrade current DPS-based methods' performance and introduce the way to mitigate the issues inspired by diverse diffusion guidance techniques including the RePaint (RP) strategy and the Pseudoinverse-Guided Diffusion Models (ΠGDM). We demonstrate our methods for the vocal declipping and bandwidth extension tasks under various levels of distortion and cutoff frequency, respectively. In both tasks, our methods outperform the current DPS-based music restoration benchmarks. We refer to \url{this http URL} for examples of the restored audio samples.

Related Publications

Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space

ICLR, 2025
Yangming Li, Chieh-Hsin Lai, Carola-Bibiane Schönlieb, Yuki Mitsufuji, Stefano Ermon*

Deep Generative Models (DGMs), including Energy-Based Models (EBMs) and Score-based Generative Models (SGMs), have advanced high-fidelity data generation and complex continuous distribution approximation. However, their application in Markov Decision Processes (MDPs), partic…

Training Consistency Models with Variational Noise Coupling

ICLR, 2025
Gianluigi Silvestri, Luca Ambrogioni, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji

Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…

Classifier-Free Guidance inside the Attraction Basin May Cause Memorization

CVPR, 2025
Anubhav Jain, Yuya Kobayashi, Takashi Shibuya, Yuhta Takida, Nasir Memon, Julian Togelius, Yuki Mitsufuji

Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel way to unders…

  • HOME
  • Publications
  • VRDMG: Vocal Restoration via Diffusion Posterior Sampling with Multiple Guidance

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.