Venue

Date

Share

Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric

Toshimitsu Uesaka

Taiji Suzuki

Yuhta Takida

Chieh-Hsin Lai

Naoki Murata

Yuki Mitsufuji

ICLR-25

2025

Abstract

In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in the real world. For richer classes of the similarity, we propose the use of weighted point clouds, namely, sets of pairs of weight and vector, as representations of instances. In this work, we theoretically show the benefit of our proposed method through a new understanding of the contrastive loss of CLIP, which we call symmetric InfoNCE. We clarify that the optimal similarity that minimizes symmetric InfoNCE is the pointwise mutual information, and show an upper bound of excess risk on downstream classification tasks of representations that achieve the optimal similarity. In addition, we show that our proposed similarity based on weighted point clouds consistently achieves the optimal similarity. To verify the effectiveness of our proposed method, we demonstrate pretraining of text-image representation models and classification tasks on common benchmarks.

Related Publications

Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning

ICLR, 2025
Shang-Fu Chen, Chieh-Hsin Lai, Dongjun Kim*, Naoki Murata, Takashi Shibuya, Wei-Hsiang Liao, Shao-Hua Sun, Yuki Mitsufuji, Ayano Hiranaka

Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward model…

Mining your own secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models

ICLR, 2025
Saurav Jha, Shiqi Yang*, Masato Ishii, Mengjie Zhao*, Christian Simon, Muhammad Jehanzeb Mirza, Dong Gong, Lina Yao, Shusuke Takahashi*, Yuki Mitsufuji

Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a ti…

Jump Your Steps: Optimizing Sampling Schedule of Discrete Diffusion Models

ICLR, 2025
Yong-Hyun Park, Chieh-Hsin Lai, Satoshi Hayakawa, Yuhta Takida, Yuki Mitsufuji

Diffusion models have seen notable success in continuous domains, leading to the development of discrete diffusion models (DDMs) for discrete variables. Despite recent advances, DDMs face the challenge of slow sampling speeds. While parallel sampling methods like -leaping ac…

  • HOME
  • Publications
  • Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.