Venue

Date

Share

Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric

Toshimitsu Uesaka

Taiji Suzuki

Yuhta Takida

Chieh-Hsin Lai

Naoki Murata

Yuki Mitsufuji

ICLR-25

2025

Abstract

In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in the real world. For richer classes of the similarity, we propose the use of weighted point clouds, namely, sets of pairs of weight and vector, as representations of instances. In this work, we theoretically show the benefit of our proposed method through a new understanding of the contrastive loss of CLIP, which we call symmetric InfoNCE. We clarify that the optimal similarity that minimizes symmetric InfoNCE is the pointwise mutual information, and show an upper bound of excess risk on downstream classification tasks of representations that achieve the optimal similarity. In addition, we show that our proposed similarity based on weighted point clouds consistently achieves the optimal similarity. To verify the effectiveness of our proposed method, we demonstrate pretraining of text-image representation models and classification tasks on common benchmarks.

Related Publications

A Comprehensive Real-World Assessment of Audio Watermarking Algorithms: Will They Survive Neural Codecs?

Interspeech, 2025
Yigitcan Özer, Woosung Choi, Joan Serrà, Mayank Kumar Singh*, Wei-Hsiang Liao, Yuki Mitsufuji

We introduce the Robust Audio Watermarking Benchmark (RAW-Bench), a benchmark for evaluating deep learning-based audio watermarking methods with standardized and systematic comparisons. To simulate real-world usage, we introduce a comprehensive audio attack pipeline with var…

Training Consistency Models with Variational Noise Coupling

ICML, 2025
Gianluigi Silvestri, Luca Ambrogioni, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji

Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…

Supervised Contrastive Learning from Weakly-labeled Audio Segments for Musical Version Matching

ICML, 2025
Joan Serrà, R. Oguz Araz, Dmitry Bogdanov, Yuki Mitsufuji

Detecting musical versions (different renditions of the same piece) is a challenging task with important applications. Because of the ground truth nature, existing approaches match musical versions at the track level (e.g., whole song). However, most applications require to …

  • HOME
  • Publications
  • Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.