Efficient Real-Time Inference in Temporal Convolution Networks
ICRA-2021
2021
Abstract
It has been recently demonstrated that Temporal Convolution Networks (TCNs) provide state-of-the-art results in many problem domains where the input data is a time-series. TCNs typically incorporate information from a long history of inputs (the receptive field) into a single output using many convolution layers. Real-time inference using a trained TCN can be challenging on devices with limited compute and memory, especially if the receptive field is large. This paper introduces the RT-TCN algorithm that reuses the output of prior convolution operations to minimize the computational requirements and persistent memory footprint of a TCN during real-time inference. We also show that when a TCN is trained using time slices of the input time-series, it can be executed in real-time continually using RT-TCN. In addition, we provide TCN architecture guidelines that ensure that real-time inference can be performed within memory and computational constraints.
Related Publications
Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algor…
The ability to approach the same problem from different angles is a cornerstone of human intelligence that leads to robust solutions and effective adaptation to problem variations. In contrast, current RL methodologies tend to lead to policies that settle on a single solutio…
Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.