Efficient Real-Time Inference in Temporal Convolution Networks
ICRA-2021
2021
Abstract
It has been recently demonstrated that Temporal Convolution Networks (TCNs) provide state-of-the-art results in many problem domains where the input data is a time-series. TCNs typically incorporate information from a long history of inputs (the receptive field) into a single output using many convolution layers. Real-time inference using a trained TCN can be challenging on devices with limited compute and memory, especially if the receptive field is large. This paper introduces the RT-TCN algorithm that reuses the output of prior convolution operations to minimize the computational requirements and persistent memory footprint of a TCN during real-time inference. We also show that when a TCN is trained using time slices of the input time-series, it can be executed in real-time continually using RT-TCN. In addition, we provide TCN architecture guidelines that ensure that real-time inference can be performed within memory and computational constraints.
Related Publications
Many potential applications of artificial intelligence involve making real-time decisions in physical systems while interacting with humans. Automobile racing represents an extreme example of these conditions; drivers must execute complex tactical manoeuvres to pass or block…
In this work, we present methods for using human-robot dialog to improve language understanding for a mobile robot agent. The agent parses natural language to underlying semantic meanings and uses robotic sensors to create multi-modal models of perceptual concepts like red a…
The year 2020 saw the covid-19 virus lead to one of the worst global pandemics in history. As a result, governments around the world have been faced with the challenge of protecting public health while keeping the economy running to the greatest extent possible. Epidemiologi…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.