Efficient Real-Time Inference in Temporal Convolution Networks
ICRA-2021
2021
Abstract
It has been recently demonstrated that Temporal Convolution Networks (TCNs) provide state-of-the-art results in many problem domains where the input data is a time-series. TCNs typically incorporate information from a long history of inputs (the receptive field) into a single output using many convolution layers. Real-time inference using a trained TCN can be challenging on devices with limited compute and memory, especially if the receptive field is large. This paper introduces the RT-TCN algorithm that reuses the output of prior convolution operations to minimize the computational requirements and persistent memory footprint of a TCN during real-time inference. We also show that when a TCN is trained using time slices of the input time-series, it can be executed in real-time continually using RT-TCN. In addition, we provide TCN architecture guidelines that ensure that real-time inference can be performed within memory and computational constraints.
Related Publications
Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…
This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…
A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.