Value Function Decomposition for Iterative Design of Reinforcement Learning Agents

James MacGlashan

Evan Archer

Alisa Devlic

Takuma Seno

Craig Sherstan

Peter R. Wurman

Peter Stone

NeurIPS 2022



Designing reinforcement learning (RL) agents is typically a difficult process that requires numerous design iterations. Learning can fail for a multitude of reasons and standard RL methods provide too few tools to provide insight into the exact cause. In this paper, we show how to integrate \textit{value decomposition} into a broad class of actor-critic algorithms and use it to assist in the iterative agent-design process. Value decomposition separates a reward function into distinct components and learns value estimates for each. These value estimates provide insight into an agent's learning and decision-making process and enable new training methods to mitigate common problems. As a demonstration, we introduce SAC-D, a variant of soft actor-critic (SAC) adapted for value decomposition. SAC-D maintains similar performance to SAC, while learning a larger set of value predictions. We also introduce decomposition-based tools that exploit this information, including a new reward \textit{influence} metric, which measures each reward component's effect on agent decision-making. Using these tools, we provide several demonstrations of decomposition's use in identifying and addressing problems in the design of both environments and agents. Value decomposition is broadly applicable and easy to incorporate into existing algorithms and workflows, making it a powerful tool in an RL practitioner's toolbox.

Related Publications

Metric Residual Networks for Sample Efficient Goal-Conditioned Reinforcement Learning

AAAI, 2023
Bo Liu*, Yihao Feng*, Qiang Liu*, Peter Stone

Goal-conditioned reinforcement learning (GCRL) has a wide range of potential real-world applications, including manipulation and navigation problems in robotics. Especially in such robotics tasks, sample efficiency is of the utmost importance for GCRL since, by default, the …

The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications

AAAI, 2023
Serena Booth*, W. Bradley Knox*, Julie Shah*, Scott Niekum*, Peter Stone, Alessandro Allievi*

In reinforcement learning (RL), a reward function that aligns exactly with a task's true performance metric is often sparse. For example, a true task metric might encode a reward of 1 upon success and 0 otherwise. These sparse task metrics can be hard to learn from, so in pr…

DM2: Distributed Multi-Agent Reinforcement Learning via Distribution Matching

AAAI, 2023
Caroline Wang*, Ishan Durugkar*, Elad Liebman*, Peter Stone

Current approaches to multi-agent cooperation rely heavily on centralized mechanisms or explicit communication protocols to ensure convergence. This paper studies the problem of distributed multi-agent learning without resorting to centralized components or explicit communic…

  • HOME
  • Publications
  • Value Function Decomposition for Iterative Design of Reinforcement Learning Agents


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.