Authors
- Pete Wurman
- Samuel Barrett
- Kenta Kawamoto
- James MacGlashan
- Kaushik Subramanian
- Thomas Walsh
- Roberto Capobianco
- Alisa Devlic
- Franziska Eckert
- Florian Fuchs
- Leilani Gilpin
- Piyush Khandelwal
- Varun Kompella
- Hao Chih Lin
- Patrick MacAlpine
- Declan Oller
- Takuma Seno
- Craig Sherstan
- Michael D. Thomure
- Houmehr Aghabozorgi
- Leon Barrett
- Rory Douglas
- Dion Whitehead Amago
- Peter Dürr
- Peter Stone
- Michael Spranger
- Hiroaki Kitano
Venue
- Nature
Date
- 2022
Outracing Champion Gran Turismo Drivers with Deep Reinforcement Learning
Franziska Eckert
Florian Fuchs
Leilani Gilpin
Piyush Khandelwal
Hao Chih Lin
Houmehr Aghabozorgi
Leon Barrett
Rory Douglas
Dion Whitehead Amago
Nature
2022
Abstract
Many potential applications of artificial intelligence involve making real-time decisions in physical systems while interacting with humans. Automobile racing represents an extreme example of these conditions; drivers must execute complex tactical manoeuvres to pass or block opponents while operating their vehicles at their traction limits. Racing simulations, such as the PlayStation game Gran Turismo, faithfully reproduce the non-linear control challenges of real race cars while also encapsulating the complex multi-agent interactions. Here we describe how we trained agents for Gran Turismo that can compete with the world’s best e-sports drivers. We combine state-of-the-art, model-free, deep reinforcement learning algorithms with mixed-scenario training to learn an integrated control policy that combines exceptional speed with impressive tactics. In addition, we construct a reward function that enables the agent to be competitive while adhering to racing’s important, but under-specified, sportsmanship rules. We demonstrate the capabilities of our agent, Gran Turismo Sophy, by winning a head-to-head competition against four of the world’s best Gran Turismo drivers. By describing how we trained championship-level racers, we demonstrate the possibilities and challenges of using these techniques to control complex dynamical systems in domains where agents must respect imprecisely defined human norms.
Related Publications
Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algor…
The ability to approach the same problem from different angles is a cornerstone of human intelligence that leads to robust solutions and effective adaptation to problem variations. In contrast, current RL methodologies tend to lead to policies that settle on a single solutio…
Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.